
Documentation for Clover 4.0

Documentation for Clover 4.0 2

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Contents
 About Clover . 7

 About Code Coverage . 8
 About Distributed Per-Test Coverage . 10

 About Test Optimization . 10
 About Clover Editions . 13

 About Clover code metrics . 13
 Supported Platforms . 16

 End of Platform Support Announcements . 17
 Clover-for-Ant . 18

 Clover-for-Ant User's Guide . 19
 1. QuickStart Guide . 20

 Clover for Ant Best Practices . 22
 Clover-for-Ant Two Line Integration . 24

 Test Optimization Quick Start Guide for Ant . 25
 2. Using Clover Interactively . 27

 3. Using Clover in Automated Builds . 29
 4. Understanding Reports . 30

 'Current' Report . 30
 Coverage Legend . 40

 Dashboard Widgets . 41
 Source Cross-Referencing in Reports . 42

 Stack Trace Navigation . 43
 Tag Clouds . 43

 'Historical' Report . 44
 5. Configuring Reports . 48

 Unit Test Results and Per-Test Coverage . 49
 Using Coverage Contexts . 51

 Using Spans . 55
 Specifying an Interval . 55

 Sharing Report Formats . 56
 Extracting Coverage Data programmatically . 57

 6. Ant Task Reference . 58
 clover-check . 59
 clover-clean . 62

 clover-env . 63
 clover-historypoint . 64

 clover-html-report . 66
 clover-instr . 68

 clover-log . 76
 clover-merge . 80

 clover-pdf-report . 81
 clover-report . 82

 <added> element . 97
 <chart> element . 98

 <columns> element . 98
 <format> element . 101
 <movers> element . 102

 JSON reference . 102
 clover-setup . 111

 Clover test detection . 121
 methodContext . 122

 profiles . 123
 statementContext . 124

 clover-snapshot . 125
 7. Ant Type Reference . 125

 clover-columns . 126

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 3

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 clover-format . 126
 clover-optimized-testset . 126

 8. Controlling Clover at Runtime . 127
 Clover Performance Tuning . 127

 Coverage Recorders . 131
 Managing the Coverage Database . 135

 Using a Flush Policy . 136
 Using Source Directives . 137

 Working with Distributed Applications . 137
 Using Distributed Per-test Coverage with Clover-for-Ant . 144

 Working with Restricted Security Environments . 146
 Working in OJVM . 146

 9. Clover Target Reference . 147
 A. Integrating Clover-for-Ant with other tools . 150

 Integrating Clover with JUnit4 Parameterized Tests . 150
 Using Clover-for-Ant with GWT . 153

 Clover-for-Ant Installation Guide . 155
 Adding to Ant's build.xml . 156
 Adding to Ant's Classpath . 157
 Clover-for-Ant Upgrade Guide . 158

 Clover-for-Ant Changelog . 158
 Changes in Clover-for-Ant 4.0.0 . 159
 Changes in Clover-for-Ant 3.3.0 . 160

 Clover-for-Maven 2 and 3 . 160
 About Clover-for-Maven 2 and 3 . 162

 Clover-for-Maven 2 and 3 Quick Start Guide . 162
 Clover-for-Maven 2 and 3 User's Guide . 163

 Basic usage . 164
 Configuring instrumentation . 167

 Configuring reports . 170
 Creating custom reports . 173
 Configuring a coverage goal . 176

 Using Test Optimization in Maven . 176
 Using Distributed Per-test Coverage . 180

 Using Clover in various environment configurations . 183
 Using Clover for web applications . 203

 Best Practices for Maven . 205
 Compiling Groovy with GMaven plugin . 210

 Compiling Groovy with Groovy Eclipse Plugin . 212
 Using with Surefire and Failsafe Plugins . 218

 Using Clover with the GWT-maven plugin . 224
 Using Clover with JAXB plugin . 227

 Using Clover with Maven + surefire-test + inner test classes . 231
 Using Clover with the maven-bundle-plugin . 232

 Using Clover via the maven-antrun-plugin . 232
 Using Clover with Maven Tycho Plugin . 233

 Clover-for-Maven 2 and 3 Installation Guide . 238
 Clover-for-Maven 2 and 3 Upgrade Guide . 238

 Clover-for-Maven 2 and 3 Changelog . 239
 Changes in Clover-for-Maven 4.0.0 . 240
 Changes in Clover-for-Maven 3.3.0 . 240

 Clover-for-Maven 2 and 3 FAQ . 240
 Clover-for-Eclipse . 241

 Clover-for-Eclipse User's Guide . 242
 1. Clover for Eclipse in 10 minutes . 242

 2. Exploration of coverage in Eclipse . 253
 3. Exploration of test results in Eclipse . 263
 4. Scope of instrumentation in Eclipse . 266

 5. Eclipse configuration options . 271
 6. Generating reports in Eclipse . 281
 7. Test Optimization for Eclipse . 287

 8. Launching an Ant build from Eclipse . 294

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 4

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 9. Eclipse advanced topics . 294
 Instrumenting RCP Application . 295

 Performance Tuning in Clover for Eclipse . 303
 Clover-for-Eclipse Installation Guide . 304

 Installing Clover-for-Eclipse . 306
 Clover-for-Eclipse Upgrade Guide . 307

 Clover-for-Eclipse Changelog . 307
 Changes in Clover-for-Eclipse 4.0.0 . 308
 Changes in Clover-for-Eclipse 3.3.0 . 309

 Clover-for-Eclipse Glossary of Terms . 309
 Clover-for-Eclipse FAQ . 311

 Clover-for-IDEA . 312
 Clover-for-IDEA User's Guide . 313

 1. Clover for IDEA in 10 minutes . 314
 2. Exploration of coverage in IDEA . 315

 3. Exploration of test results in IDEA . 319
 4. Scope of instrumentation in IDEA . 321

 5. IDEA configuration options . 326
 Clover-for-IDEA Auto-Updates . 331

 6. Generating reports in IDEA . 332
 7. Test Optimization for IDEA . 335

 8. Launching Ant build from IDEA . 340
 9. IDEA Advanced topics . 340

 Performance Tuning in Clover for IDEA . 340
 Clover-for-IDEA Installation Guide . 340

 Clover-for-IDEA Upgrade Guide . 343
 Clover-for-IDEA Changelog . 345

 Changes in Clover-for-IDEA 4.0.0 . 346
 Changes in Clover-for-IDEA 3.3.0 . 347

 Clover-for-IDEA Glossary of Terms . 347
 Clover-for-IDEA FAQ . 348

 Clover-for-Grails . 348
 Clover-for-Grails Quick Start Guide . 350

 Clover-for-Grails User's Guide . 351
 Configuration options . 351

 Advanced report configuration . 352
 Advanced setup configuration . 354

 Configuring method context filters . 356
 Test Optimization with Clover-for-Grails . 357

 Clover-for-Grails Installation Guide . 360
 Clover-for-Grails Upgrade Guide . 363

 About Clover-for-Grails . 364
 Clover-for-Grails Changelog . 364

 Changes in Clover-for-Grails 4.0.0 . 365
 Changes in Clover-for-Grails 3.3.0 . 365

 Clover Command Line Tools . 366
 CloverInstr . 367

 CloverMerge . 368
 ConsoleReporter . 370

 HtmlReporter . 371
 JSONReporter . 373

 PDFReporter . 374
 XMLReporter . 376

 Bamboo Clover Plugin . 378
 Gradle Clover Plugin . 378
 Griffon Clover Plugin . 379
 Hudson Clover Plugin . 379
 Jenkins Clover Plugin . 379

 Sonar Clover Plugin . 379
 Clover Release Notes . 379

 Clover 4.0 Release Notes . 382
 A side-by-side comparison of the Classic and the ADG HTML report . 387

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 5

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 Clover 3.3 Release Notes . 393
 Clover 3.2 Release Notes . 397
 Clover 3.1 Release Notes . 400
 Clover 3.0 Release Notes . 404
 Clover 2.6 Release Notes . 409
 Clover 2.5 Release Notes . 411
 Clover 2.4 Release Notes . 412
 Clover 2.3 Release Notes . 414
 Clover 2.2 Release Notes . 415
 Clover 2.1 Release Notes . 417
 Clover 2.0 Release Notes . 418
 Clover Release Summary . 421

 Clover Tutorials . 421
 Clover-for-Ant tutorial . 422

 Part 0 - Clover in 10 minutes . 422
 Part 1 - Measuring Coverage . 424

 Part 2 - Historical Reporting . 430
 Part 3 - Automating Coverage Checks . 435

 Part 4 - Test Optimization Tutorial . 437
 Clover-for-Maven tutorials . 440

 How to configure your Clover license . 441
 Hacking Clover . 442

 Clover-for-Android . 442
 Clover-for-Scala . 454

 Converting XML to database format . 455
 Measuring per-test coverage for manual tests . 456

 Updating optimization snapshot file . 458
 Using Clover for other programming languages . 459

 Instrumenting JSP files . 459
 Using Clover for PHP . 461

 Glossary . 463
 branch coverage . 463

 code coverage . 463
 coverage . 464

 coverage clouds . 464
 decision coverage . 464

 history point . 464
 interval . 464

 method coverage . 464
 span . 464

 statement coverage . 464
 test coverage . 464

 Clover FAQ . 464
 Concepts & Usage FAQ . 466

 Can I create a Clover Report on Server A if I have the clover.db which I generated on Server B? 467
 Does Clover depend on JUnit? . 468

 Does Clover integrate with Maven? . 468
 Does Clover support the new language features in JDK1.5? . 468

 Does Clover work with JUnit4 and TestNG? . 468
 How are the Clover coverage percentages calculated? . 468

 How do I compare the code coverage between two releases of my code? 468
 How do I get started with Clover? . 468

 How do I use Clover with NetBeans? . 468
 What are the limitations of Code Coverage? . 470

 What does the name "Clover" mean? . 470
 What is Code Coverage Analysis? . 470

 What is the coverage.db file and why am I seeing files like coverage.dbxxxxxxxxx_xxxxx_xxxx? . 470
 What third-party libraries does Clover utilise? . 470

 Where did Clover originally come from? . 471
Why does Clover instrument classes I have excluded using the 'exclude' element of the 'clover-setup'

 task? . 471
 Why does Clover use source code instrumentation? . 471

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 6

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 Will Clover integrate with my IDE? . 472
 Eclipse Plugin FAQ . 472

I only need instrumented classes for unit testing and I don't want to risk publishing them to my
 production environment. How can I do this with Clover? . 472

 Is Clover supported on IBM's RAD? . 473
 I store my plugins and features in an Eclipse extension area. Does Clover support this? 473

 Why can I only see coverage data for the last test case I executed? . 473
 IDEA Plugin FAQ . 473

 I've run my tests, but coverage information does not show in IDEA . 473
 What does enabling Instrument Test Source Folders do? . 473

 Where does IDEA write its log file? . 473
 Maven 2 and 3 Plugin FAQ . 474

 Deploying Instrumented Jars . 474
 How to keep Clover reports between builds? . 475

 How to remove -clover suffix from artifact name? . 475
 Is there an alternative to using the Maven Central repository? . 476

 Preparing multi-module projects for remote deployment with Clover-for-Maven 2 477
 Troubleshooting License problems . 477

 Troubleshooting problems with displaying characters . 478
 Support Policies . 478

 Bug Fixing Policy . 479
 How to Report a Security Issue . 480

 New Features Policy . 480
 Security Advisory Publishing Policy . 481

 Security Update Policy . 482
 Severity Levels for Security Issues . 482

 Update Policy . 483
 Troubleshooting . 483

 Compiling my instrumented sources fails with a 'code too large' error. . 484
For some statements in my code Clover reports "No Coverage information gathered for this

 expression". What does that mean? . 484
 Hit count for multi-threaded test is incorrect in Clover's report. . 485

I'm trying to get a coverage report mailed, but I keep getting "mail Failed to send email". How do I fix
 this? . 485

I'm using the maven-clover-plugin version 2.4 with a license downloaded from Atlassian and get the
 message 'Invalid or missing License' . 485

 Tools for Troubleshooting Clover-for-Ant . 486
 Two questions to ask yourself first when troubleshooting Clover . 486

When generating some report types on my UNIX server with no XServer, I get an exception "Can't
 connect to X11 server" or similar. . 486

 When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code? 487
When using Clover from Ant, why do I get "Compiler Adapter

 'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar? 487
Why does the 'Test Results' summary page report show that I have unique coverage, when the source

 page shows no unique coverage? . 487
 Why do I get 0% coverage when I run my tests and then a reporter from the same instance of Ant? 487

487
 Why do I get a 'java.lang.OutOfMemoryError - PermGen space' error? . 487

 Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on? 488
 Clover Resources . 488

 Clover Development Hub . 489
 Clover for Grails Developer Guide . 490

 Creating Grails plugins using Clover . 492
 Clover for Hudson Developer Guide . 492
 Clover for Jenkins Developer Guide . 494

 Clover for Maven 2 and 3 Developer Guide . 496
 Clover-for-Maven1 Developer Guide . 497

 Clover Road Map . 498
 Contributing to the Clover Documentation . 499

 Database Structure . 500
 Upgrading third party libraries . 505

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 7

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

About Clover

Getting Started

If you are new to Clover and want to get it going quickly, try the following:

The and the will show you how to quickly set-upAnt Quick Start Guide Maven 2 and 3 Quick Start Guide
Clover in your builds.
The and the will show you how to useClover for Eclipse in 10 minutes Clover for IDEA in 10 minutes
Clover in Eclipse/IDEA as well as briefly describe reports generated by Clover.
The section provides a brief background on the theory and motivationIntroduction to Code Coverage
behind Code Coverage.
The page gives more details about an HTML report generated by CloverUnderstanding Reports
The provides a good alternative introduction to Clover.Clover Tutorial

For help with Ant, see the online Ant manual at . Also recommendedhttp://ant.apache.org/manual/index.html
reading is Eric Burke's .Top 15 Ant Best Practices

For Clover troubleshooting information, see the and . Still noAtlassian Answers Clover Knowledge Base
luck? Raise an issue for team.Atlassian Support

System Requirements and Supported Platforms
See the and .Clover-for-Ant Installation Guide Supported Platforms

What's New in Clover?
See the .Clover Release Notes

Acknowledgements
Clover makes use of the following excellent third-party libraries:

Apache Ant The Ant build system.

ANTLR A public domain parser generator.

Apache Commons A set of reusable Java components.

Apache Velocity Template engine used for HTML report generation.

Cajo A lightweight library for multi-machine communication.

FastUtil A library for high-performance operations on primitive types.

Groovy An agile and dynamic language for the Java Virtual Machine.

GSON A library converting Java objects into their JSON representation.

Guava Google's core libraries for collections, caching, primitives support, string processing,
I/O etc.

iText (2.0.1) A library for generating PDF documents.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/index.html
http://www.onjava.com/pub/a/onjava/2003/12/17/ant_bestpractices.html
http://answers.atlassian.com
https://confluence.atlassian.com/display/CLOVERKB/Clover+Knowledge+Base+Home
https://support.atlassian.com/
http://ant.apache.org/
http://www.antlr.org/
http://commons.apache.org
http://velocity.apache.org/
https://cajo.dev.java.net/
http://fastutil.dsi.unimi.it/
http://groovy.codehaus.org/
http://code.google.com/p/google-gson
http://code.google.com/p/guava-libraries/
http://itextpdf.com

Documentation for Clover 4.0 8

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

JCommon /
JFreeChart

An open source library for generating charts.

JDOM A library for accessing, manipulating, and outputting XML data from Java code.

overLIB A JavaScript library for pop-ups and tool tips.

TheJIT An open source toolkit for creating interactive data visualisations.

Utils.js A JavaScript library.

About Code Coverage

What is Code Coverage?

Code coverage is the percentage of code which is covered by automated tests. siCode coverage measurement
mply determines which statements in a body of code have been executed through a test run, and which
statements have not. In general, a code coverage system collects information about the running program and
then combines that with source information to generate a report on the test suite's code coverage.

Code coverage is part of a feedback loop in the development process. As tests are developed, code coverage
highlights aspects of the code which may not be adequately tested and which require additional testing. This
loop will continue until coverage meets some specified target.

Why Measure Code Coverage?

It is well understood that unit testing improves the quality and predictability of your software releases. Do you
know, however, how well your unit tests actually test your code? How many tests are enough? Do you need
more tests? These are the questions code coverage measurement seeks to answer.

Coverage measurement also helps to avoid test entropy. As your code goes through multiple release cycles,
there can be a tendency for unit tests to atrophy. As new code is added, it may not meet the same testing
standards you put in place when the project was first released. Measuring code coverage can keep your testing
up to the standards you require. You can be confident that when you go into production there will be minimal
problems because you know the code not only passes its tests but that it is well tested.

In summary, we measure code coverage for the following reasons:

To know how well our tests actually test our code
To know whether we have enough testing in place
To maintain the test quality over the lifecycle of a project

Code coverage is not a panacea. Coverage generally follows an 80-20 rule. Increasing coverage values
becomes difficult, with new tests delivering less and less incrementally. If you follow defensive programming
principles, where failure conditions are often checked at many levels in your software, some code can be very
difficult to reach with practical levels of testing. Coverage measurement is not a replacement for good code
review and good programming practices.

In general you should adopt a sensible coverage target and aim for even coverage across all of the modules that
make up your code. Relying on a single overall coverage figure can hide large gaps in coverage.

How Code Coverage Works

There are many approaches to code coverage measurement. Broadly there are three approaches, which may
be used in combination:

Source code
instrumentation

This approach adds instrumentation statements to the source code and compiles the
code with the normal compile tool chain to produce an instrumented assembly.

To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged
and included in the Clover JAR. We do this to prevent pain for users who may use different versions of
these libraries in their projects.

http://creativecommons.org/licenses/by/2.5/au/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.jdom.org/
http://www.macridesweb.com/oltest
http://thejit.org/
http://codepraxis.com

Documentation for Clover 4.0 9

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Intermediate
code
instrumentation

Here the compiled class files are instrumented by adding new bytecodes, and a new
instrumented class is generated.

Runtime
information
collection

This approach collects information from the runtime environment as the code executes
to determine coverage information

Clover uses source code instrumentation, because although it requires developers to perform an instrumented
build, source code instrumentation produces the most accurate coverage measurement for the least runtime
performance overhead.

Be aware that while Clover is capable of instrumenting both Java and Groovy source code, the instrumentation
stage occurs prior to compilation with Java and during compilation with Groovy.

As the code under test executes, code coverage systems collect information about which statements have been
executed. This information is then used as the basis of reports. In addition to these basic mechanisms, coverage
approaches vary on what forms of coverage information they collect. There are many forms of coverage beyond
basic statement coverage including conditional coverage, method entry and path coverage.

Code Coverage with Clover

Clover is designed to measure code coverage in a way that fits seamlessly with your current development
environment and practices, whatever they may be. Clover's IDE Plugins provide developers with a way to quickly
measure code coverage without having to leave the IDE. Clover's Ant and Maven integrations allow coverage
measurement to be performed in Automated Build and Continuous Integration systems, and reports generated
to be shared by the team.

Types of Coverage measured

Clover measures three basic types of coverage analysis:

Statement Statement coverage measures whether each statement is executed.

Branch Branch coverage (sometimes called Decision Coverage) measures which possible branches in
flow control structures are followed. Clover does this by recording if the boolean expression in
the control structure evaluated to both true and false during execution.

In Groovy code, Clover also treats Elvis expressions (a :? b), safe method calls (a?.b()), safe
property calls (a?.b) and safe attribute calls (a?.@b) as branches.

Method Method coverage measures if a method was entered at all during execution.

Clover uses these measurements to produce a Total Coverage Percentage for each class, file, package and for
the project as a whole. The Total Coverage Percentage allows entities to be ranked in reports. The Total
Coverage Percentage (TPC) is calculated as follows:

TPC = (BT + BF + SC + MC)/(2*B + S + M) * 100%

where

BT - branches that evaluated to "true" at least once
BF - branches that evaluated to "false" at least once
SC - statements covered
MC - methods entered

B - total number of branches
S - total number of statements
M - total number of methods

What about Line Coverage metric?

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 10

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

A metric is a basic metric offered by bytecode instrumentation tools, such as Cobertura or Emma,Line Coverage
and it's tightly related with a fact that inside compiled classes we can have only information about line numbers
(instead of information about code elements, such as statements etc).

As Clover uses source code instrumentation, it actually "sees" a real code structure. Therefore, Clover offers a S
 metric, which is similar to a Line Coverage metric in terms of it's granularity and precision.tatement Coverage

Further reading

Why does Clover use source code instrumentation?
About Clover code metrics

About Distributed Per-Test Coverage
With the Distributed Per-Test Coverage feature, Clover has the ability to record per-test coverage from tests that
are running in separate test JVMs, which may be co-sited or distributed around a network. This allows you to roll
together results from unit and functional tests, from JVMs running different test frameworks, possibly in remote
locations, yet resulting in a single unified view of your project's per-test code coverage.

Measuring per-test coverage allows you to run Clover's new on your functional tests. A batteryTest Optimization
of functional tests (being generally more time-consuming than unit tests) strongly benefits from the ability to run
only the tests on code which has changed.

RELATED LINKS

Using Distributed Per-test Coverage

Using Distributed Per-test Coverage with Clover-for-Ant

About Test Optimization
This page explains Clover's Test Optimization feature and gives a brief explanation of how it works. See the Test

 for practical instructions.Optimization Quick Start Guide for Ant

On this page:

What is Test Optimization?
How Test Optimization Works
Supported Test Environments for Test Optimization

Ant
Maven 2 & 3
Eclipse
IDEA

Exemplary results
Related Links

What is Test Optimization?

Test optimization will make a build potentially complete a lot faster than a full build and test run. It should do this
without substantially compromising the quality of the feedback it gives; in other words a quicker pass or fail
result, but a reasonably accurate pass or fail.

There are two ways of ensuring a build completes quickly:

1. Run only the tests required to confirm the validity of the changes that triggered the build.
2. Run all the tests but in an optimal order: any failed tests from the previous build, all tests covering modified
code, then in ascending order by test invocation time.

Since Clover records which tests covered which lines of code, it can tell the build to only run tests that cover
code modified since the last build.

How Test Optimization Works

The following is a general outline of what is required to enable Clover to optimize the test and build process.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 11

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.
5.

6.
7.

8.

9.

10.
11.

A full clean build is performed. Any existing Clover databases are removed.
Clover performs instrumentation on all Java source files. The Clover registry is created.
javac compiles the instrumented sources
All unit tests are run. Coverage data is stored next to the Clover registry.
A Clover snapshot is saved - this is essentially a mapping of application source files to the set of tests
which hit each file.
Zero or more Java source files are modified, added or removed
Clover re-instruments either only the modified source files or all source files (depending on how Clover is
invoked). The Clover registry is updated, and any files modified or added since the last snapshot are
marked as such.
Clover uses this information and the snapshot from the previous test run to determine which tests need
rerunning.
The test runner is invoked. Only tests obtained in #9 and any tests unknown to Clover (perhaps excluded
from instrumentation) are run. Tests are ordered to encourage early failures.
A snapshot is saved.
Go to step 7 unless a maximum number of optimised builds has reached, has changedclover.jar
between builds or some other build-specific condition signifies a full rebuild is required (e.g. configuration
file changes) in which case .go to step 1

Supported Test Environments for Test Optimization

The following environments are supported for Test Optimization.

Your unit tests must be completely standalone and have no inter-test dependencies.

Ant

Junit - using the <batchset/> element nested in the Ant <junit/> task to select tests to be run.
Junit TestSuites are currently not supported.
TestNG is unsupported by Test Optimization for Clover for Ant.
If your tests run in a separate JVM to your application, you will need to .enable distributed coverage

Maven 2 & 3

Maven version 2.0.8+
maven-surefire-plugin.
JUnit TestSuites are currently not supported.
TestNG test suites are currently not supported. (Will not work in Maven 2.0.9)NB
Parallel test execution is unsupported.
If your tests run in a separate JVM to your application (e.g. in a forked web server), you will need to enabl

.e distributed coverage

Eclipse

JUnit test classes are supported but TestSuites are not currently supported.
TestNG is not currently supported.
Optimization of tests where they reside in different project to the application code is not currently
supported (to be addressed in a future release).

IDEA

JUnit test classes are supported but TestSuites are not currently supported.
TestNG is not currently supported.

Exemplary results

 The following is a sample from development of one of Atlassian products. Optimization results in
your project(s) may vary.

Clover's Test Optimization features currently do not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 12

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

To see the benefits of Clover's Test Optimisation, we have tracked build times on one Atlassian software
development project. Over a 10 day period a development team committed 142 changesets as part of their
ongoing development effort. For each changeset, two builds were triggered - a "normal" build, where all tests
were executed, and a test-optimised build, where only relevant tests were executed. The following chart shows
cumulative times for both the normal and test-optimised builds.

Clover's test optimization was configured to
perform full test run every 10 builds.

This is a reason why you can see regular peaks
in optimized build time.

We have gained about 70% reduction of
cumulative build time thanks to test
optimization.

Less than 10% of test cases (on average) were
executed in optimized runs
(i.e. after a peak with a full test run).

Related Links

Overview of Test Optimization

Test Optimization Quick Start for Ant

Test Optimization Quick Start for Maven 2

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp

Documentation for Clover 4.0 13

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover for Maven 2 - Test Optimization Best Practices

Test Optimization for IDEA

About Clover Editions
This page contains information about the different editions of Clover.

On this page:
Overview
Clover Desktop Edition
Clover Server Edition

Overview

Clover editions were introduced with the release of Clover 2.6, in September 2009. Previous versions of Clover
do not belong to a particular edition. Editions only apply to the IDE plugin variants of Clover, i.e.
Clover-for-Eclipse and Clover-for-IDEA.

Clover Desktop Edition

Clover Desktop Edition is an affordable option for individual developers, providing code coverage analysis and
also the use of test optimization for developers working in isolation. Clover Desktop Edition is only available for
Clover's Eclipse and IDEA plugins. See the for more information.pricing page

Clover Server Edition

Clover Server edition contains the full suite of report generation and Continuous Integration features for coding
in a team environment. The Server Edition is essentially the full-featured product, simply renamed to Server
Edition. Pricing for Server Edition remains the same.

 The Desktop Edition only applies to the IDE plugin variants of Clover, i.e. Clover-for-Eclipse and
Clover-for-IDEA.
See the for more information.pricing page

About Clover code metrics

Code coverage metrics

Branch coverage

Branch coverage (or 'decision coverage') is a metric that measures which possible branches incode coverage
flow control structures are followed. Clover does this by recording if the boolean expression in the control
structure evaluated to both true and false during execution.

Statement coverage

Statement coverage is a metric that measures which statements in a body of code have beencode coverage
executed through a test run, and which statements have not.

Method coverage

Method coverage is a metric that measures whether a method was entered at all duringcode coverage
execution.

Total Coverage Percentage (Coverage %, TPC)

The Total Coverage Percentage is calculated as follows:

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/pricing.jsp
http://www.atlassian.com/software/clover/pricing.jsp

Documentation for Clover 4.0 14

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

TPC = (BT + BF + SC + MC)/(2*B + S + M) * 100%

where

BT - branches that evaluated to "true" at least once
BF - branches that evaluated to "false" at least once
SC - statements covered
MC - methods entered

B - total number of branches
S - total number of statements
M - total number of methods

Code complexity metrics

Average Method Complexity (Avg Method Cmp)

The average method complexity of code in the given context. In case of:

classes: Average Method Complexity = sum of Method Complexity of all class' methods / number of
methods in a class
packages: Average Method Complexity = sum of Method Complexity of all package's methods / number
of methods in a package
project: Average Method Complexity = sum of Method Complexity of all project's methods / number of
methods in a project

Complexity (Cmp, Total Cmp)

Cyclomatic complexity of code in the given context.

Method Complexity

Cyclomatic complexity of a single method. It's calculated as follows:

empty method complexity == 1
simple statement complexity == 0
switch block complexity == number of case statements
try catch block complexity == number of catch statements
ternary expression complexity == 1
boolean expression complexity == number of && or || in expression

Complexity Density (Cmp Density)

Complexity Density is the average number of paths in your code per statement in given context (method, class,
package). It's calculated as follows:

Cmp Density = Complexity / number of statements

LOC

Lines Of Code (including comment lines).

NC LOC

Non-Commented Lines Of Code. Lines of code that contain comments are not counted in this metric, leaving
only the actual functioning code itself.

Examples

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 15

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

// # of statements, # of branches, Method Cyclomatic Complexity

// 0, 0, 1
void A() {}

// 1, 0, 1
void A() { a(); }

// 1 ,0 ,1
void A() { a = (6 < 7); }

// 3, 0, 1
void A() { a(); b(); c(); }

// 3, 2, 2
void A() { if (a()) b(); else c(); }

// 2, 2, 3
void A() { if (a() || b()) c(); }

// 2, 0, 1
void A() { if (1 + 2 == 4) c(); }

// 2, 2, 2
void A() { for (; a();) b(); }

// 2, 2, 3
void A() { for (; a() || b();) c(); }

// 2, 0, 1
void A() { for (; 1 + 2 == 4;) c(); }

// 2, 2, 2
void A() { while (a()) b(); }

// 2, 2, 3
void A() { while (a() || b()) c(); }

// 2, 0, 1
void A() { while (1 + 2 == 4) c(); }

// 3, 0, 2
void A() { switch (a()) { case 1: b();} }

// 5, 0, 3
void A() { switch (a()) { case 1: b(); case 2: c();} }

// 1, 2, 2
void A() { a() ? 1 : 2; }

// 1, 2, 3
void A() { a() || b()? 1 : 2; }

// 1, 6, 4
void A() { a() ? b() ? c()? 1 : 2 : 3 : 4; }

References

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 16

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

About Code Coverage
Glossary
clover-report#columns

Supported Platforms
This page shows the supported platforms for and its minor releases.Clover 4.0.x

Key: = Supported; = Not Supported

Java Version

JRE / JDK (1) 1.6 - 1.8

Groovy Version

Groovy 1.6.2 or later
 1.6.8, 1.6.9 and 1.7.1 do not support due to a Groovy bugPer-Test coverage
 2.0.0 does not work with JDK1.5 due to a Groovy bug
 Eclipse and IDEA (No Groovy support in IDE)

JRE / JDK (1) 1.6 or later

Operating Systems

Microsoft Windows (2)

Linux (2)

Apple Mac OS X (2)

Build Automation Tools

Apache Ant 1.7.0 or later

Apache Maven 2 2.0.2 or later

Apache Maven 3 3.0.0 or later

Application Development Frameworks

Grails 1.3 or later (6)

Integrated Development Environments (IDEs)

JetBrains IntelliJ IDEA 9.0 - 13.1 (5)

Eclipse (3) 3.6 - 4.4, RAD 8 & 8.5 & 9 (4)

Web Browsers (for viewing Clover's HTML report)

Internet Explorer 9.0 or later

Firefox

Chrome

Supported Platform Notes

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns
http://jira.codehaus.org/browse/GROOVY-5593

Documentation for Clover 4.0 17

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

4.

5.

6.

The last Clover version supporting JDK/JRE 1.4 is 3.1.12. The last Clover version supporting JDK/JRE
1.5 is 3.3.x. Since Clover 4.0 you must use at least Java 1.6 for compilation and runtime. Please note that
it's still possible to set level = 1.3 (no assert keyword) or 1.4 (no enums, generics) or 1.5 (nosource
@Override on interfaces) for instrumentation.
You can a JRE or JDK for Windows/Linux. On Mac OS X, a JDK is bundled with the operatingdownload
system. Once a JRE or JDK has been installed, you need to set the environment variable.JAVA_HOME

Clover is a pure Java application and should run on any operating system platform provided the
requirements for the JRE or JDK are satisfied. Clover does not work on Solaris OS due to bugs in NIO
implementation in Java on this platform.

Your Eclipse projects must use the built-in Java Builder for compilation of source code. Clover does not
support AspectJ-based projects.

Support for Eclipse 3.2 and 3.3 and RAD 7.0 has ended with Clover 3.1.5. Support for Eclipse 3.4 and 3.5
as well as RAD 7.5 has ended with Clover 3.1.12.

Support for IntelliJ IDEA 7 and 8 has ended with Clover 3.1.5. The IDEA 12 is supported since Clover
3.1.8.

 If you're using IDEA 12.0.x and Clover 3.1.8-3.1.11 then you have to disable the "external build"
. feature

The IDEA 13 is supported since Clover 3.2.1. The IDEA 13.1 is supported since Clover 3.3.0.

Support for Grails 1.2 has ended with Clover 3.1.5.

End of Platform Support Announcements

End of Platform Support Announcements
This page contains announcements of the end of support for various platforms and browsers when used with
Clover. This is summarised in the table below. Please see the sections following for the full announcements.

End of support matrix for upcoming versions of Clover

Platform Announcement Date Clover End of Technical Support

IntelliJ IDEA 9 31 March 2014 As of Clover 4.1

IntelliJ IDEA 10.x, 10.5.x 31 March 2014 As of Clover 4.1

Eclipse 3.6 and RAD 8.0 31 March 2014 As of Clover 4.1

The table above summarises information regarding the end of support announcements for upcoming Clover
releases. If a platform (version) has already reached its end of support date, it is not listed in the table.

On this page (most recent announcements first):

Deprecated Clover support for IntelliJ IDEA 9 (announced 31 March 2014)
Deprecated Clover support for IntelliJ IDEA 10.0 and 10.5 (announced 31 March 2014)

Why is Atlassian ending support for these platforms?
Atlassian is committed to delivering improvements and bug fixes as fast as possible. We are also
committed to providing world class support for all the platforms our customers run our software on.
However, as new versions of IDEs, web browsers, build tools etc. are released, the cost of supporting
multiple platforms grows exponentially, making it harder to provide the level of support our customers
have come to expect from us. Therefore, we no longer support platform versions marked as end-of-life
by the vendor, or very old versions that are no longer widely used.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/clover-setup#clover-setup-clover-setup-Parameters
http://www.java.com/en/download/manual.jsp
http://confluence.atlassian.com/display/CRUCIBLE/Setting+JAVA_HOME

Documentation for Clover 4.0 18

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Deprecated Clover support for Eclipse 3.6 and RAD 8.0 (announced 31 March 2014)

Deprecated Clover support for IntelliJ IDEA 9 (announced)31 March 2014

Atlassian announces the deprecation of Clover support for IntelliJ IDEA 9. We will no longer support IDEA 9 in
Clover 4.1. Clover 4.1 is expected to be released in the first half of 2014.

If you have questions or concerns regarding this announcement, please email eol-announcement at
.atlassian dot com

Deprecated Clover support for IntelliJ IDEA 10.0 and 10.5 (announced)31 March 2014

Atlassian announces the deprecation of Clover support for IntelliJ IDEA 10.0.x and 10.5.x. We will no longer
support these in Clover 4.1. Clover 4.1 is expected to be released in the first half of 2014.

If you have questions or concerns regarding this announcement, please email eol-announcement at
.atlassian dot com

Deprecated Clover support for Eclipse 3.6 and RAD 8.0 (announced)31 March 2014

Atlassian announces the deprecation of Clover support for Eclipse 3.6 and RAD 8.0. We will no longer support
these in Clover 4.1. Clover 4.1 is expected to be released in the first half of 2014.

If you have questions or concerns regarding this announcement, please email eol-announcement at
.atlassian dot com

Clover-for-Ant

Clover-for-Ant Documentation

What is Clover-for-Ant?

Clover-for-Ant integrates the industry-leading
code coverage tool, with theAtlassian Clover
Apache Ant build automation tool.
Clover-for-Ant allows you to easily measure
the coverage of your unit tests, enabling
targeted work in unit testing — resulting in
stability and enhanced quality code with
maximal efficiency of effort.

Getting Started with Clover for Ant

Download Clover for Ant

Quick Start Guide

Installation Guide

Changelog for latest version of
Clover-for-Ant

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/clover/
http://www.atlassian.com/software/clover/download

Documentation for Clover 4.0 19

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Using Clover for Ant

User's Guide

Installation & Configuration Guide

Test Optimization Quick Start Guide for Ant

Resources and Support

Atlassian Answers

Knowledge Base

Technical Support

Offline Documentation

You can download the Clover documentation
in PDF, HTML or XML format.

Recently Updated

Clover Road Map
Aug 12, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Upgrading third party libraries
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Updating optimization snapshot file
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Hacking Clover
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 4 - Test Optimization Tutorial
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 3 - Automating Coverage Checks
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 2 - Historical Reporting
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 1 - Measuring Coverage
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover 4.0 Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

A side-by-side comparison of the Classic and the ADG HTML report
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-Ant User's Guide
1. QuickStart Guide

Clover for Ant Best Practices
Clover-for-Ant Two Line Integration
Test Optimization Quick Start Guide for Ant

2. Using Clover Interactively
3. Using Clover in Automated Builds
4. Understanding Reports

'Current' Report
Coverage Legend
Dashboard Widgets
Source Cross-Referencing in Reports
Stack Trace Navigation

http://creativecommons.org/licenses/by/2.5/au/
https://answers.atlassian.com/tags/clover
https://answers.atlassian.com/tags/clover
https://confluence.atlassian.com/display/CLOVERKB/Clover+Knowledge+Base+Home
http://support.atlassian.com
https://confluence.atlassian.com/display/ALLDOC
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313465693&selectedPageVersions=17&selectedPageVersions=16
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=310379086&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317949806&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313459430&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=171966945&selectedPageVersions=51&selectedPageVersions=50
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=73793592&selectedPageVersions=14&selectedPageVersions=13
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71600301&selectedPageVersions=48&selectedPageVersions=47
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=72548380&selectedPageVersions=44&selectedPageVersions=43
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=624198431&selectedPageVersions=7&selectedPageVersions=6
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=632980339&selectedPageVersions=4&selectedPageVersions=3

Documentation for Clover 4.0 20

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Tag Clouds
'Historical' Report

5. Configuring Reports
Unit Test Results and Per-Test Coverage
Using Coverage Contexts
Using Spans

Specifying an Interval
Sharing Report Formats
Extracting Coverage Data programmatically

6. Ant Task Reference
clover-check
clover-clean
clover-env
clover-historypoint
clover-html-report
clover-instr
clover-log
clover-merge
clover-pdf-report
clover-report

<added> element
<chart> element
<columns> element
<format> element
<movers> element
JSON reference

Basic Clover Confluence Integration
clover-setup

Clover test detection
methodContext
profiles
statementContext

clover-snapshot
7. Ant Type Reference

clover-columns
clover-format
clover-optimized-testset

8. Controlling Clover at Runtime
Clover Performance Tuning
Coverage Recorders
Managing the Coverage Database
Using a Flush Policy
Using Source Directives
Working with Distributed Applications

Using Distributed Per-test Coverage with Clover-for-Ant
Working with Restricted Security Environments

Working in OJVM
9. Clover Target Reference
A. Integrating Clover-for-Ant with other tools

Integrating Clover with JUnit4 Parameterized Tests
Using Clover-for-Ant with GWT

1. QuickStart Guide

Getting started with Clover-for-Ant

This section shows you how to quickly get Clover integrated into your build. Clover instrumentation and reporting
are highly configurable so later sections of this manual will detail available configuration options and typical
usage scenarios.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 21

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Follow these simple steps to integrate Clover with your build:

1. Install Clover

1.1 Ensure you are using a recent version of Ant.

1.2 Download Clover from .http://www.atlassian.com/software/clover/download

1.3 Unzip the Clover distribution into a directory. This directory will be referred to as in thisCLOVER_HOME
guide.

1.4 Place your file in /lib (you can obtain evaluation license from clover.license CLOVER_HOME http://my.at
).lassian.com

2. Add Clover targets

Edit build.xml for your project:

2.1 Add the Clover Ant tasks to your project:

<property name="clover.jar" location="CLOVER_HOME/lib/clover.jar"/>
<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

2.2 Add a target to switch on Clover:

<target name="with.clover">
 <clover-setup/>
</target>

2.3 Add one or more targets to run Clover reports:

For HTML reporting, use the following (but change the outdir to a directory path where Clover should put the
generated HTML):

<target name="clover.html">
 <clover-html-report outdir="coverage"/>
</target>

OR, for PDF reporting, use the following (but change the outfile to a file where Clover should write the PDF
file):

<target name="clover.pdf">
 <clover-pdf-report outfile="coverage.pdf"/>
</target>

OR, for XML reporting, use the following (but change the outfile to a file where Clover should write the XML
file):

Do you want to type less code? See the fast .Clover Two Line Integration

Do you want to try out a ready-to-use code sample? See the Clover Tutorial, Part 0 - Clover in 10
.minutes

Unless otherwise indicated, all configuration options throughout this User's Guide apply to both Java and
Groovy.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/download
http://my.atlassian.com
http://my.atlassian.com

Documentation for Clover 4.0 22

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<target name="clover.xml">
 <clover-report>
 <current outfile="coverage.xml">
 <format type="xml"/>
 </current>
 </clover-report>
</target>

OR, for simple emacs-style reporting to the console, try:

<target name="clover.log">
 <clover-log/>
</target>

2.4 Add to the runtime classpath for your tests. How you do this depends on how you run yourclover.jar
tests. For tests executed via the task, add a element:<junit> <classpath>

<junit ...>
 ...
 <classpath>
 <pathelement path="${clover.jar}"/>
 </classpath>
 <formatter type="xml"/>
</junit>

Compile and run with Clover

Now you can build your project with Clover turned on by adding the " " target to the list of targetswith.clover
to execute. For example (if your compile target is named ' ' and your unit test target is named ' '):build test

ant with.clover build test

Generate a Coverage Report

To generate a Clover coverage report:

ant clover.html (or clover.xml, clover.pdf etc)

NEXT STEPS

See the , for how to set up Clover's Test Optimization feature toTest Optimization Quick Start Guide for Ant
streamline your testing.

FURTHER READING

See .Clover for Ant Best Practices

Clover for Ant Best Practices

This section describes some recommended practices when integrating Clover into your Ant build. For a great list
of general Ant best practices, see .http://www.onjava.com/pub/a/onjava/2003/12/17/ant_bestpractices.html

For a sample report, see .'Current' Report

http://creativecommons.org/licenses/by/2.5/au/
http://www.onjava.com/pub/a/onjava/2003/12/17/ant_bestpractices.html

Documentation for Clover 4.0 23

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

4.

5.

6.

Let Clover automatically choose the database location
The attribute is optional. If not supplied, Clover will automatically create a special directoryinitstring
for the . There are several advantages in letting Clover use the default location.Clover coverage database
Clover tasks can find the database more easily, and build files become more portable. If left to the default
setting, there is no need to have Clover reporting targets depend on the the Clover setup target.

Use the <clover-clean> task
Once you have generated the reports or history points you require from a Coverage run, use <clover-c

 to delete the database so that it will be freshly created for the next build. This is easily achieved by>lean
adding the task to any existing clean target.< >clover-clean

Avoid setting the compiler or executable attributes on the <javac> task
Setting either of these attributes makes your build less portable. It may also prevent Clover from installing
correctly in your build.

Set the source attribute on the <javac> task
Setting the source attribute increases the portability of your build by explicitly defining the language level
of the project. If you don't set it, the language level is determined by whatever underlying compiler is
found by Ant.

Use Target dependencies in preference to <ant> and <antcall>
Ant's target dependencies are an efficient way to manage build dependencies. You should always strive
to use this mechanism over the more 'procedural' style of explicitly calling targets. By explicitly calling Ant
tasks, you miss out on Ant's powerful dependency management where up-to-date targets are skipped.
You also introduce significant memory overhead (particularly if is set). Excessive use of fork="true" <

 can also make a build file less readable, because it can be difficult to trace which propertiesantcall>
and references are valid for a given target.

 If you must use and , be aware that you must set to "true" if you are<ant> <antcall> inheritrefs
calling in an upper-level project. <clover-setup>

Below, we demonstrate an alternative. Instead of this:

<!-- BAD. References wont be passed (References from <clover-setup/> would be
lost). -->
<target name="all">
<antcall target="clean">
<antcall target="compile">
<antcall target="dist">
<antcall target="test">
</target>

it is much better to use something like this:

<!-- GOOD -->
<target name="all" depends="clean, compile, dist, test"/>

If using the <junit> task, consider using fork="true" forkmode="once"
Setting these attributes means that your JUnit tests will run in a single, separate JVM. This isolates the
unit tests from the Ant JVM, and means that no special flushing is required to have Clover coverage data

Note
If you want to specify the explicity, it is strongly recommended that you give Cloverinitstring
its own direct directory, because a Coverage run can result in many files being written to the
database.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 24

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

6.

1.

2.

3.

4.

5.

written to disk when the tests end.

Clover-for-Ant Two Line Integration

To get Clover integrated into your build as quickly as possible, follow these simple steps.

Download Clover-for-Ant, unzip it, take the lib/clover.jar and save it in your home directory.

Add the following lines to your build.xml file:

<taskdef resource="cloverlib.xml" classpath="${user.home}/clover.jar"/>
<clover-env/>

 Note that this will not work within an Ant target. It must be at the top level of the build file.

Add the clover.jar to your test classpath:

<junit fork="true" forkmode="once">
 <classpath>
 <pathelement location="${user.home}/clover.jar"/>
 </classpath>
</junit>

If you have a target already called "test" you can simply run

ant clover.all

Otherwise, run the following:

ant with.clover your.test.target clover.report

Alternatively, define a property called "test.target" whose value is the name of your test target.

Complete! That concludes the Ant two-line integration. You should now be set up to run Clover on your
Ant builds and start taking advantage of Clover's advanced code coverage analysis.

Appendix

By calling <clover-env/>, the following targets becomes available to you:

Target Name Description

clover.all Runs clover.clean, with.clover, test, clover.report from a single target.

clover.clean Deletes the clover database and the

${clover.dest}

directory.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/download

Documentation for Clover 4.0 25

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clover.current Generates an HTML and XML report to

${clover.dest}

using

${project.title}

.

clover.report Same as clover.current, however a history report will also be created, using the
historypoints in

${clover.project.historydir}

.

clover.save-history Saves a history point to

${clover.project.historydir}

with.clover Enables Clover on this build

clover.snapshot Saves a snapshot file to assist with unit test optimization

 These are available also by running `ant -projecthelp`.

For more instructions about using targets, see the . Any properties may be definedClover Target Reference ${}
on the command line, for example: -Dclover.project.historydir=/home/clover/historydir

Test Optimization Quick Start Guide for Ant

This page contains the basic steps for adding Clover's Test Optimization to an existing Ant configuration.

Follow the steps in this document to set up Clover's Test Optimization, which allows targeted testing of only the
code which has changed since the last build.

These steps assume your build is Clover-enabled already (in particular it has a task already setwith.clover
up and has a taskdef established for the Clover Ant tasks). You will have to complement this quick start guide
with .basic Clover configuration information

These steps also assume that your build file is currently used for a CI (Continuous Integration) build and possibly
for general builds (e.g. On a developer's own machine). Below, we describe how you can take that build file and
add sections to bake in Test Optimization. Adding optional support for Test Optimization (switching it on/off),
specifying whether test minimisation is performed and test reordering other than the default ' ' arefailfast
advanced options which are covered elsewhere.

Need more information? Find it in the .Clover QuickStart Guide

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 26

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

4.

BEFORE YOU START

Try to ensure your unit tests do not have dependencies between them as this may cause optimized builds to fail
more frequently than usual.

BASIC STEPS

You will need to use this:

<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

Choose a location for the test snapshot file that can survive clean builds. This location:

<PROJECT_DIR>/.clover/coverage.db.snapshot

The default is not as good as manually deleting this directory each build, but it is workable if you only use
as, by default, it won't delete snapshots. Add a property for this, as in the following<clover-clean/>

example:

<property name="clover.snapshot.file" value="/path/to/clover.snapshot"/>

Add a target to generate the test :snapshot

<target name="clover.snapshot" depends="with.clover">
 <clover-snapshot file="${clover.snapshot.file}"/>
 </target>

Modify the > element of the task used to test your application, so that the filesets<batchtest <junit/>
are wrapped in the element. See the following example:clover-optimized-testset

<junit ...>
<batchtest fork="true" todir="${test.results.dir}/results">
 <fileset dir="src/tests" includes="${test.includes}"
excludes="${test.excludes}"/>
</batchtest>
</junit>

This becomes the following:

Clover's Test Optimization feature currently do not support optimization for test cases written in Groovy (
:CLOV-1152)

test cases written in Groovy will be executed in each test run
test cases written in Java will be optimized
application code can be written in Java or Groovy in order to be optimized

Clover's Test Optimization does not optimize execution of JUnit TestSuites () and TestNG (CLOV-616 CL
).OV-373

<batchtest> resource collection shall contain JUnit TestCases

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1152
https://jira.atlassian.com/browse/CLOV-1152
https://jira.atlassian.com/browse/CLOV-616
https://jira.atlassian.com/browse/CLOV-373
https://jira.atlassian.com/browse/CLOV-373

Documentation for Clover 4.0 27

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

4.

5.

1.
2.
3.

<junit ...>
<batchtest fork="true" todir="${test.results.dir}/results">
 <clover-optimized-testset snapshotfile="${clover.snapshot.file}">
 <fileset dir="src/tests" includes="${test.includes}"
excludes="${test.excludes}"/>
 </clover-optimized-testset>
</batchtest>
</junit>

Run the optimized build (this will typically be run by their CI plan). Assuming a "test" target (with
appropriate dependencies so that the code is instrumented/compiled):

ant with.clover clean test clover.snapshot

Running Java and Groovy test cases

Please note that Ant's <junit>/<batchtest> collects the included resources from any number of nested resource
collections and then generates a test class name for each resource that ends in or . It means that.java .class
you cannot use because such files will be ignored. However, you can point<include name="**/*Test.groovy"/>
to files, for example:*.class

<junit ...>
 <classpath refid="build.classpath"/>
 <batchtest fork="yes" todir="${test.result}">
 <clover-optimized-testset snapshotfile="${clover.snapshot.file}">
 <fileset dir="${build.dir}">
 <include name="**/*Test.class"/>
 </fileset>
 </clover-optimized-testset>
 </batchtest>
</junit>

Using the configuration above, Clover will optimize tests according to:

changes in application code written in Java or Groovy
changes in test code written in Java

Related Links

Overview of Test Optimization

Test Optimization Technical Details

Test Optimization Quick Start for Maven 2

Clover for Maven 2 - Test Optimization Best Practices

2. Using Clover Interactively
In this scenario, a developer is responsible for obtaining a certain level of code coverage on her code before it is
accepted into the base.

The typical cycle the developer follows is something like:

write code/tests
run tests
inspect test results and code coverage

This process is repeated until all tests pass and code coverage of the tests meets a certain level.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp

Documentation for Clover 4.0 28

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover provides the following features to support this development pattern:

Measuring coverage on a subset of source files
Viewing source-level code coverage quickly
Viewing summary coverage results quickly
Incrementally building coverage results

Measuring coverage on a subset of source files

The task takes an optional nested fileset element that tells Clover which files should be< >clover-setup
included/excluded in coverage analysis:

<clover-setup>
 <files includes="**/plugins/cruncher/**, **/plugins/muncher/**"/>
</clover-setup>

The includes could be set using an Ant property so that individual developers can specify includes on the
command line:

<property name="coverage.includes" value="**"/>
 <clover-setup>
 <files includes="${coverage.includes}"/>
 </clover-setup>

Developers can then use a command line like the following for Java code:

ant build -Dcoverage.includes=java/**/foo/*.java

And for Groovy code:

ant build -Dcoverage.includes=groovy/**/foo/*.groovy

Viewing source-level code coverage quickly

Clover provides two ways of quickly viewing coverage results. The task provides quick reporting< >clover-log
to the console:

<clover-log/>

The output format from the task uses the [file:line:column] format that many IDEs can parse.< >clover-log

Viewing summary coverage results quickly

The task provides an option that will print a summary of coverage results to the console:< >clover-log

<clover-log level="summary"/>

Incrementally building coverage results

When iteratively improving coverage on a subset of your project, you may want to include coverage data from
several iterations in coverage results. Clover supports this with the span attribute which works on current reports
— see . This attribute can be used to tell Clover how far back in time to include coverage resultsUsing Spans
(measured from the time of the last Clover build). To include results gathered over the last hour use:

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/2.+Using+Clover+Interactively#id-2UsingCloverInteractively-Measuringcoverageonasubsetofsourcefiles
http://confluence.atlassian.com/display/CLOVER/2.+Using+Clover+Interactively#id-2UsingCloverInteractively-Viewingsource-levelcodecoveragequickly
http://confluence.atlassian.com/display/CLOVER/2.+Using+Clover+Interactively#id-2UsingCloverInteractively-Viewingsummarycoverageresultsquickly
http://confluence.atlassian.com/display/CLOVER/2.+Using+Clover+Interactively#id-2UsingCloverInteractively-Incrementallybuildingcoverageresults

Documentation for Clover 4.0 29

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-log span="1h"/>

3. Using Clover in Automated Builds
In this scenario, the project is checked out, built and tested at regular intervals, usually by an automated
process. Some tools that support this type of build are , and .AntHill Bamboo CruiseControl

Clover supports this scenario with the following features:

Detailed coverage reports for the whole team
Executive summary coverage reports
Historical coverage and project metrics reporting
Coverage criteria checking and triggers

Detailed coverage reports for the whole team

In this example, the task is used to generate source-level coverage reports in HTML<clover-html-report>
format that can be published for viewing by the whole team:

<target name="clover.report" depends="with.clover">
 <clover-html-report outdir="clover_html"/>
</target>

Executive summary coverage reports

In this example, the task is used to generate summary reports in PDF format, suitable<clover-pdf-report>
for email or audit purposes.

<target name="clover.summary" depends="with.clover">
 <clover-pdf-report outfile="coverage.pdf"/>
</target>

Historical coverage and project metrics reporting

Clover can generate a historical snapshot of coverage and other metrics for your project using the <clover-hi
 task. Historical data can then be collated into a historical report using the tastorypoint> <clover-report>

sk:

Note
The and the tasks used here are simplified<clover-html-report> <clover-pdf-report>
versions of the task. If you require more control over your report formatting and<clover-report>
structure, use the task.<clover-report>

http://creativecommons.org/licenses/by/2.5/au/
http://www.anthillpro.com/html/products/anthillos/default.html
http://www.atlassian.com/software/bamboo
http://cruisecontrol.sourceforge.net/

Documentation for Clover 4.0 30

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<target name="clover.report" depends="with.clover">

 <!-- generate a historypoint for the current coverage -->
 <clover-historypoint historyDir="clover_hist"/>

 <!-- generate a report with both current and historical data -->

 <clover-html-report outdir="clover_html"
 historyDir="clover_hist"/>
</target>

Coverage criteria checking and triggers

The task can be used to monitor coverage criteria. If coverage does not meet the criteria, the<clover-check>
build can be made to fail or an arbitary activity can be triggered. In the example below, if project coverage is not
80%, an executive summary coverage report is generated and mailed to the team:

<target name="coverageAlert" depends="coverage.check"
 if="coverage_check_failure">

 <clover-pdf-report outfile="coverage.pdf"/>

 <mail from="nightlybuild@somewhere.not"
 tolist="team@somewhere.not"
 subject="coverage criteria not met"
 message="${coverage_check_failure}"
 files="coverage.pdf"/>
</target>

<target name="coverage.check" depends="with.clover">
 <clover-check target="80%"
 failureProperty="coverage_check_failure"/>
</target>

4. Understanding Reports

'Current' Report — 'Current' Clover reports display graphical and numerical data relating to the most recent
coverage data collected for the project.
'Historical' Report — 'Historical' reports display graphical and numerical data relating to sets of coverage data
collected over time for the project.

RELATED TOPICS

For information on generating reports, see the following :Ant Tasks

 < > - HTML report with predefined settingsclover-html-report
 < > - PDF report with predefined settingsclover-pdf-report
 < > - highly customizable HTML, XML, PDF or JSON reportsclover-report

Also see the tutorial ' '.Clover-for-Ant tutorial

'Current' Report
'Current' Clover reports display graphical and numerical data relating to the most recent coverage data collected

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 31

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

for the project.

Clover 4 brings new HTML report developed according to the ; it's shortly namedAtlassian Design Guidelines
"ADG". Clover 3 offers an old-style JavaDoc-like format, named "Classic". It is still possible to fall-back to the

 report in Clover 4, however this report style is deprecated."Classic"

ADG report style (Clover 4 only)
Project overview page
Package-level and project-level overview of application and test code
Source file view
Test results
'Top risks' and 'Quick wins' tag clouds
Coverage tree map
See also: 'Historical' Report.

Classic report style (Clover 3 and Clover 4)
Appendix: naming convention of lambda functions

ADG report style (Clover 4 only)

Project overview page

General

On the project overview page you will find several tabs, thanks to which you can quickly learn about your project:

Dashboard - contains several widgets with statistics and most critical issues
Application code - browse through application classes
Test code - browse through test classes
Test results - contains results from your unit tests
Top risks - the most complex and the least covered classes
Quick wins - "low hanging fruits"
Coverage tree map

Blue application header

Clover logo - opens the Atlassian Clover home page
Linked reports - shows reports linked with the current one (optional, see the <clover-report> task for more
details)
Help icon - opens the Clover documentation home page

Dashboard tab

It contains several useful widgets:

Code coverage - shows Total Coverage Percentage metric of your application code (i.e. excluding test
code)
Test results - shows number of tests executed and their success ratio
Code metrics - shows code metrics of your application code of the entire project (i.e. excluding test code)
Class coverage distribution - histogram showing number of classes vs coverage
Class complexity - dot chart showing class complexity vs coverage
Coverage tree map - size of the rectangle represents package complexity, while colour shows its
coverage
Top project risks - the most complex and the least covered classes
Most complex packages - packages with the highest cyclomatic complexity
Most complex classes - classes with the highest cyclomatic complexity
Least tested methods - methods having the lowest code coverage

Package tree view

You can use it to navigate through the project structure. You can also search for packages matching given

http://creativecommons.org/licenses/by/2.5/au/
https://developer.atlassian.com/design/latest
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Format
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Format

Documentation for Clover 4.0 32

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

sub-string.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 33

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Package-level and project-level overview of application and test code

The "Application code" and the "Test code" tabs show list of packages along with their metrics and their code
coverage.

In case of a project-level overview, there is an additional toggle "Metrics from sub-packages: Separated /
Aggregated", which allows to calculate an aggregated code coverage and code metrics, i.e. given package will
include also metrics from its sub-packages.

Table columns are sortable and .customizable

Source file view

This page contains few sections:

code metrics for current source file
list of classes in the source file, the "Show methods" opens a dialog showing detailed data for a class
number of tests "hitting" the source file, the "Select tests to highlight the test coverage" opens list of tests;
it's possible to select them to see per-test coverage
source code view page with highlighted code coverage

In the source view, the left-most column shows line numbers. The second column shows the number of times a
particular line has been executed during the test run.

If a line is never executed or has only been partially executed, the entire line of code will be highlighted in red.
You can hover the mouse over a line to get a pop-up describing in detail the coverage information for that line.

You can click on the ' ' button to see more details about highlighting.Show legend

Rendered code provides also and .source cross referencing stack trace navigation

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 34

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Test results

The "Test results" tab shows information about executed tests - for an entire project, a package, a class as well
as for a single test case.

What is worth to note is that a class-level summary may contain multiple tests having the same name - it may
happen in case you have executed test several times or you have used a test framework allowing test iterations
(for instance, the JUnit4 with @Parameterized annotation or the Spock framework).

A test case page shows detailed information like test result, duration, stack traces (if any) as well as a list of
classes which were covered by the test.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 35

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

'Top risks' and 'Quick wins' tag clouds

The Top Risks tag cloud highlights those classes that are the most complex, yet are the least covered by your
tests. The larger and redder the class, the greater the risk that class poses for your project or package. Font size
represents the Average Method Complexity metric, while the colour represents the Total Coverage metric (vivid
red for 0%, pale red for 100%).

The Quick Wins tag cloud highlights the "low hanging coverage fruit" of your project or package. You will achieve
the greatest increase in overall code coverage by covering the largest, reddest classes first. Big red classes
contain the highest number of untested elements. Font size represents the Number of Elements metric, while the
colour represents the Number of Elements Untested (vivid red means more untested).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 36

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage tree map

The coverage tree map report allows simultaneous comparison of classes and packages by complexity and by
code coverage. This is useful for spotting untested clusters of code. The tree map is divided by a package
(labelled) and then further divided by a class (unlabelled). The size of the package or class indicates its
complexity (larger squares indicate greater complexity, while smaller squares indicate less complexity). Colours
indicate the level of coverage, as follows:

pale red for most covered
vivid red for least covered

Clicking on a class will navigate you to the corresponding source file view.

See also: .'Historical' Report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 37

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Classic report style (Clover 3 and Clover 4)

The screen shot below shows a generated Classic HTML report.

In the top left-hand corner is the list of packages. You can view all classes in the project or select a
particular package to view. Clicking on the name of a package will bring up the relevant classes in the
frame below it. Selecting one of these classes will bring up the source code in the frame on the right.
The header provides summary information relating to the current project. The left hand side
displays the report title and the time of the coverage contained in the report. For current reports, the
timestamp is the timestamp of the most recent run of tests. The right hand side of the header displays
metrics for the package, file or project overview which is currently selected. Depending on the current
selection, the metrics include all or a subset of:

Number of Lines of Code (LOC)
Number of Non-commented Lines of Code (NCLOC)

 This information is currently not available with Clover reports on Groovy code.
Number of Methods
Number of Classes
Number of Files
Number of Packages.

Test coverage is indicated by colour-coding. For , click 'SHOW HELP' in the report header.details
Inline help appears when you mouse-over any column header, button, etc.

The screen shot shows the report for the source file with the green and red bar at the top showingMoney.java
the amount of code coverage on this class. The method, statement and conditional coverage percentages are
beside this.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 38

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The left-most column shows line numbers. The second column shows the number of times a particular line has
been executed during the test run. As you can see, lines 15-17 have been run 156 times by the JUnit tests,
whereas line 28 has only been run twice.

If a line is never executed or has only been partially executed, the entire line of code will be highlighted in red.
Depending on your browser, you can hover the mouse over a line to get a popup describing in detail the
coverage information for that line. The following screenshot shows the coverage on a section of the MoneyBag.

 source file:java

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 39

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Although line 52 of the above class has been executed 14 times, the method has neverMoneyBag isZero()
evaluated to so it has not been fully tested. Therefore it, and the following two lines, are . This istrue highlighted
also the case with lines 58 and 59.

This highlighting feature makes it easy for you to see which parts of the code have not been fully exercised by
your tests so that you can then improve testing to provide better code coverage.

If any of the lines shaded red contained a bug, they may never be detected because the tests as they are
don't test those parts of the code.

If you click on a button on the left side of the class name, table will expand and show methods declared in it.[+]
If the HTML report was generated with and options, theshowLambdaFunctions=true showInnerFunctions=true
table will also show lambda functions declared inside methods or assigned to a class field.

Screen shot: sample report for code containing lambda functions

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 40

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Appendix: naming convention of lambda functions

Naming convention for Java 8 lambda functions is as follows:
<lambda_prefix><parameter_list><sequence_number> where:

<lambda_prefix> is $lam
<parameter_list> is a list of argument names separated by underscore, like ; list can be emptyx_y_z
<sequence_number> is where N counts definitions of a lambda function in given source file (starting#N
from 0)

For example: means a sixth lambda in the source file having the signature. $lam_x_y_z#6 (x, y, z) =>

Why such naming convention?

if you use meaningful names of lambda arguments, you'll be able to easily find such lambda function on a
list
sequence number helps to distinguish zero-argument lambda functions

Coverage Legend

In Clover HTML reports, test coverage is indicated by the following colour-coded legend.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 41

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The page margin has three colour indicators:

left half with line number is the "optimistic marker", which is highlighted in:
green when at least part of the code line was covered during execution
otherwise red if it was not covered at all

right half with number of hit counts (i.e. how many times given line was executed) is the "pessimistic
marker" which is highlighted in

red if at least part of line was not executed or when branch expression was not evaluated to both
true and false
otherwise green if the whole line was fully covered

narrow strip related with per-test code coverage, which is:
dark green if given source line was executed at least once from a successful test case (i.e. test has
passed), or
dark yellow if given source line was executed from one or more test cases, but all tests were failed
or
empty if given code was not executed from a test case (for instance from "main()" method or called
by JVM GC "finalize()" method)

Dashboard Widgets

In Clover's HTML reports, the dashboard page provides a summary of the coverage and unit test results, as well
as suggested entry points for the rest of the report.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 42

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Selected widgets:

The chart shows a breakdown of how many classes have a givenClass Coverage Distribution
percentage of coverage. This offers a more granular insight into the nature of your project's coverage,
compared to an aggregate overall percentage. You can mouse-over the chart's data points to see exactly
how many classes are represented in each band.

The chart allows you to quickly spot classes with high complexity, as well as lowClass Complexity
coverage. Expressed as a scatter plot, outlying classes are readily visible because they will rise
prominently above the mean. You can mouse-over the chart's data points to see the names of the classes
displayed and also click them, to access information about that class.

Source Cross-Referencing in Reports

Clover provides source cross-referencing in HTML reports. Identifiers are looked up in the current scope and
linked to the appropriate source where possible.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 43

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Stack Trace Navigation

Stack Trace Navigation

Clover's Stack Trace Navigation feature provides quick, in-context information about unit test failures.

When a test failure occurs, the exception that caused the failure is captured and analysed by Clover. At each
source line that propagated the exception, Clover places an icon. Clicking on this icon provides a popup
window showing all exceptions that were propagated from this line, and the full stack trace for that exception.
This allows a developer to quickly navigate up or down the stack trace to investigate the cause of the failure.

Tag Clouds

A or 'weighted list' is a way of visually representing information.Tag Cloud

In Clover, ' ' provide an instant overview of your entire project and individual packages,Coverage Clouds
enabling you to identify areas of your code that pose the highest risks or shortcomings.Each Coverage Cloud
displays two metrics per Java or Groovy class. One metric is displayed via the font size, and the other via the
font colour. Each attribute has relative weighting across the entire project. Classes are sorted alphabetically.

Tool tips on each class name provide you with the real values for each metric.

Risks

The Project Risks / Package Risks Cloud highlights those classes that are the most complex, yet are the least
 by your tests. The larger and redder the class, the greater the risk that class poses for your project orcovered

package. Package risk clouds can be toggled to include or exclude classes in sub-packages.

Metric Attribute

http://creativecommons.org/licenses/by/2.5/au/
http://www.joelamantia.com/ideas/tag-clouds-evolve-understanding-tag-clouds

Documentation for Clover 4.0 44

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Average Method Complexity Font Size

% Coverage Font Color

Quick Wins

This Cloud highlights the of your project or package. You will achieve the"low hanging coverage fruit"
greatest increase in overall project coverage by covering the largest, reddest classes first. Package Quick Win
clouds can be toggled to include or exclude classes in sub-packages.

Metric Attribute

Number of Elements Font Size

Number of Elements Untested Font Color

Screen shot: Top risks cloud

'Historical' Report
'Historical' reports display graphical and numerical data relating to forsets of coverage data collected over time
the project.

Clover 4 brings new HTML report developed according to the ; it's shortly namedAtlassian Design Guidelines
"ADG". Clover 3 offers an old-style JavaDoc-like format, named "Classic". It is still possible to fall-back to the

 report in Clover 4, however this report style is deprecated."Classic"

ADG report style (Clover 4 only)
Classic report style (Clover 3 and Clover 4)

Custom charts

ADG report style (Clover 4 only)

General

Historical report consists of several sections:

Date range and Code metrics widgets
Coverage overview - shows coverage from the last history point
Added classes - classes which have been added in the specified time span
Changed classes - classes for which metrics have changed above specified thresholds in given time span
Charts - set of charts (they are)customizable

http://creativecommons.org/licenses/by/2.5/au/
https://developer.atlassian.com/design/latest
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Format
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Format

Documentation for Clover 4.0 45

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Blue application header

Clover logo - opens the Atlassian Clover home page
Linked reports - shows reports linked with the current one (optional)
Help icon - opens the Clover documentation home page

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 46

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Classic report style (Clover 3 and Clover 4)

When you view the report you should see a picture similar to the screenshot below, although it is likely that the
graphs that you produce will contain different values.

Like the , the historical report begins with a header containing relevant project information.'current' report
This includes the report title, the project metrics and the period for which history points are included in the
report. (A is a snapshot of code coverage and metrics data for the project at a particular pointhistory point
in time.)
Below this header is the which shows the branch, statement, method and totalProject Overview Chart
coverage percentages for the project for the history point included in the report.most recent
The graph shows the percentage values of branch, statement, method and total'Coverage over time'
coverage for each history point and plots them against time in an easy-to-read chart.

Screen shot: historical coverage over time

The graph shows the project statistics for each history point plotted against time. It is'Metrics over time'
therefore possible to observe changes in metrics such as the number of methods. In the example, the
number of methods can be seen shown in green.

Screenshot: Historical Metrics Over Time

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 47

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The section allows you to monitor the coverage of newly added classes.'Classes added'
The final section, , displays classes that have increased or decreased in coverage by more than'Movers'
a specified percentage point threshold over a particular time interval, the default being one percentage
point over the two latest history points.

Screen shot: Classes Added and Movers

Custom charts

You can also view charts for coverage against complexity and covered versus uncovered elements (see below).
These are just two examples. Any metrics can be charted, including user-defined metrics, customised for your
needs.

Screen shot: Historical Coverage Against Complexity

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 48

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Screen shot: Historical Covered Versus Uncovered Elements

5. Configuring Reports

For information on generating reports, see the following :Ant Tasks

 < >clover-html-report
 < >clover-pdf-report
 < >clover-report

The tutorial discusses how you can .customise many aspects of the historical report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 49

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Also see the tutorial ' '.Clover-for-Ant tutorial

Further reading:
Unit Test Results and Per-Test Coverage — Clover has the ability to integrate Unit Test results and per-test
coverage information into Coverage reports. This unique feature gives you a powerful insight into how well tested
your covered code actually is, by showing you exactly which statements each of your tests cover.
Using Coverage Contexts
Using Spans

Specifying an Interval
Sharing Report Formats — You can share report formats across a number of reports. This allows you to
standardise on a set of report formats and use these for all of your reports.
Extracting Coverage Data programmatically

Unit Test Results and Per-Test Coverage

Per-Test Coverage

Clover has the ability to integrate Unit Test results and per-test coverage information into Coverage reports. This
unique feature gives you a powerful insight into how well tested your covered code actually is, by showing you
exactly which statements each of your tests cover.

To take advantage of this feature all you need to do is:

Allow Clover to instrument your test classes.

You must ensure that all your test classes are included for Clover instrumentation. To enable Clover
instrumentation of your source code, use the task.<clover-setup>
This allows Clover to specially mark test methods to enable per-test coverage reporting. The Clover
instrumenter for Junit 3.x, Junit 4.x and TestNG. If you are usingautomatically detects test methods
another testing framework, see "Advanced Test Case Detection" below.

Advanced Test Case Detection

If you are using a testing framework which does not use Junit or TestNG conventions for determining test
methods, the nested element of and will allow you to<testsources/> <clover-setup> <clover-instr>
specify the convention used by your framework.

The framework for example uses the following:Instinct

<clover-setup>
 <testsources dir="tests">
 <testclass>
 <testmethod annotation="Specification"/>
 <testmethod name="^should.*"/>
 <testmethod name="^must.*"/>
 </testclass>
 </testsources>
</clover-setup>

You can optionally group definitions in or elements. Each ele<testclass/> <or/> <and/> <testmethod/>
ment is automatically grouped by an OR.

http://creativecommons.org/licenses/by/2.5/au/
http://code.google.com/p/instinct/

Documentation for Clover 4.0 50

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-setup>
 <testsources dir="tests">
 <or>
 <testclass name=".*Context">
 <testmethod annotation="Specification"/>
 </testclass>
 <testclass name=".*Test">
 <testmethod name="test.*"/>
 </testclass>
 </or>
 </testsources>
</clover-setup>

Advanced Test Result Configuration

Clover does its best to record your test results in the Clover database. In some instances however, Clover can
not always do so. Although unit tests using annotations will be@Test(expected=Exception.class)
marked as passed, more novel JUnit constructs such as may not be recognized and Clover will flag thoserules
tests as failed when in fact they passed. To integrate these test results into your Clover reports follow these
steps:

Enable XML reports from your Unit Test execution.
In an Ant build, if using the task, you need to add an XML result formatter:<junit>

<property name="testreport.dir" value="build/test-reports">

 <junit ...>
 ...
 <formatter type="xml"/>
 <batchtest todir="${testreport.dir}">
 ...
 </batchtest>
 </junit>

Such results can be similarly produced by the Ant TestNG tasks.

Supply the <testresults> element at report time.
If the element is specified, and similar tasks will use these results<testresults> <clover-report>
instead of those collected by Clover. Clover's test result collection may also be switched off via the dontR

 attribute on or .ecordTestResults <clover-setup> <clover-instr>

e.g.

<testresults dir="test-results" include="TEST-*.xml"/>

Limitations

Differences between Groovy and Java with respect to tasks.<clover-setup>

In Java, the names of annotations and classes that you use to define your test code could be
either fully-qualified or not fully-qualified, and depend on how you declared these annotations and
classes in your actual Java source code.
In Groovy, fully qualified annotation and class names are required in your test code, regardless of
how you have declared these annotations and classes in your actual Groovy source code.

http://creativecommons.org/licenses/by/2.5/au/
http://blog.mycila.com/2009/11/writing-your-own-junit-extensions-using.html

Documentation for Clover 4.0 51

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover's per-test coverage collection does not support parallel test execution.

Using Coverage Contexts

Clover defines a as a part of source code that matches a specified structure or pattern. Contexts areContext
either pre-defined or user-defined at instrumentation time. Each context must have a unique name. At report
time, you can specify which contexts you would like to exclude in the coverage report.

Block Contexts

Block Contexts are pre-defined by Clover. They represent 'block' syntactic constructs in the Java language. A full
list of supported Block Contexts is shown below.

Name Description

static Static initializer block

instance Instance initializer block

constructor Constructor body

method Method body

switch Switch statement body

while While loop body

do do-while loop body

for For loop body

if if body

else else body

try try body

catch catch body

finally finally body

sync synchronized block

assert assert statement

@deprecated a deprecated block

Method Contexts

A Method Context represents the set of methods whose signature matches a given pattern. Clover provides
several pre-defined method contexts:

Name Regexp Description

private (.*)?private .* matches all private methods

property (.*)?public .*(get|set|is)[A-Z0-9].* matches all property getters/setters

A method signature includes all annotations, modifiers (public, static, final etc), the return type, the method

Clover's block context feature currently does not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 52

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
a.
b.
c.
d.
e.
f.

g.
h.
i.
j.

k.
l.

2.
3.
4.
5.
6.

name, parameter types and names, the throws clause and exceptions.

You can define your own method contexts via the sub-element of , or via<methodContext> < >clover-setup
the configuration panel of your Clover IDE Plugin.

Method Contexts with Groovy code

While is flexible in nature, the regular expressions defined in the parameters of Groovy syntax regexp <method
 elements must match a 'normalised' method signature.Context>

Bear in mind that this is not necessarily how you would define the method in your Groovy source code.

For example, in Groovy code, a method defined via the 'def' keyword is always 'public'. This means that your re
 must actually match " ". Hence, if you wanted to create a that matched the followinggexp public def regexp

Groovy method:

def void foo()

Your must assume a match against:regexp

public def void foo()

Normalised method signature rules for defining parameters:regexp

The following list illustrates the normalised form of the method signature (and hence, order) in which your regex
 must be defined to match specific methods in your Groovy source code:p

Modifiers– in the following order:
public
protected
private
abstract
static
final
transient
volatile
synchronized
native
strictfp
interface
(Refer to for more information.)Sun Java's documentation

Type Parameters (optional) – for example, , <T> <E extends Object>
Return Type – for example, , , , void int String Object[]
Name – for example, myMethod
Parameter List – for example, (String arg1, int arg2)
Throws – for example, throws Exception1, Exception2

Examples of normalized signatures for Groovy

Note
When matching method signatures against context regexps, whitespace is normalised and comments
are ignored.

Note
Contexts are matched against your source at . This means you need to instrumentation-time re-instru

 after defining a new context.ment your code

http://creativecommons.org/licenses/by/2.5/au/
http://groovy.codehaus.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/reflect/Modifier.html#toString%28int%29

Documentation for Clover 4.0 53

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

// normalized signature is: "private void <init>()"
private PrivateConstructor() {

}

// normalized signature is: "public void <init>(int i)"
public PublicConstructor(int i) {

}

// normalized signature is: "private def implicitVoidMethod()"
private implicitVoidMethod() {

}

// normalized signature is: "private void explicitVoidMethod()"
private void explicitVoidMethod() {

}

// normalized signature is: "private int someNonVoidMethod()"
private int someNonVoidMethod() {
 return 0
}

// normalized signature is: "public static synchronized Object[]
complexSignature(String i, List<Integer> j)"
synchronized static public Object [] complexSignature(String i, List <
Integer > j) {
 return new Object[0]
}

Statement Contexts

A Statement Context represents the set of statements that match a given pattern. For example, you might want
to set up a statement context to allow you to filter out 'noisy' statements (such as logging calls) by defining a
statement context regexp .LOG\.debug.*

A regular expression defined in a statement context will be matched against a of the statement:normalized form

any white space characters before and after the statement are removed
any newline characters are removed
single space character is used to separate code tokens

When writing a regular expression you should take into account that in case of nested statements, the outer
statement will contain inner statements as well. Consider the following example:

void testStatementContext() {
 while (true) {
 if (logger.isDebugEnabled()) {
 logger.debug("abc");
 }
 }
}

Clover's statement context feature currently does not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 54

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

in this case, method body has three statements:

a) the while loop

while (true) {{ if (logger.isDebugEnabled()) {{ logger.debug("abc"); } }}

b) the if condition

if (logger.isDebugEnabled()) {{ logger.debug("abc"); }

c) the logger.debug() method call

logger.debug("abc");

Assuming that you'd like to filter-out "logger.debug" calls, the regular expression should look like this:

<statementcontext name="logger" regexp="^logger\.debug.*"/>

Note that if the expression would be written as "^ logger\.debug.*", then it would match also outer statements..*

Using Context Filters

Filtering catch blocks

In some cases you may not be interested in the coverage of statements inside catch blocks. To filter them, you
can use Clover's predefined context to exclude statements inside catch blocks from a coverage report:catch

<clover-report>
 <current outfile="clover_html">
 <format type="html" filter="catch"/>
 </current>
 </clover-report>

This generates a source-level HTML report that excludes coverage from statements inside catch blocks.

Filtering simple methods

In order to filter-out simple getters and setters you can use built-in "property" method context.

You can define also own filter, based on cyclomatic complexity and/or number of statements. For example:

<clover-setup ...>
 <!-- Don't instrument methods which have cyclomatic complexity <= 1 or <= 3
statements -->
 <methodContext name="simple_method" regexp=".*" maxComplexity="1"
maxStatements="3"/>
</clover-setup>

Note
This section describes using context filters with Ant. For details of using filters with the IDE plugins, see
the individual documentation for the plugin.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 55

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Filtering logging statements

To remove logging statements for coverage reports, you will need to define one or more statement contexts that
match logging statements in your source:

<clover-setup ...>
 <statementContext name="log" regexp="^LOG\..*"/>
 <statementContext name="iflog" regexp="^if \(LOG\.is.*"/>
 <methodContext name="main" regexp="public static void main\(String
args\[\]\).*"/>
 ...
</clover-setup>

This defines two statement contexts and one method context. The first matches statements that start with ' 'LOG.
while the second matches statements that start with ' ', which is designed to match conditional loggingif (LOG.
statements such as:

if (LOG.isDebugEnabled()) {
 // do some expensive debug logging
}

The third matches all 'main' methods that have a String Array named 'args' in the constructor:

public static void main(String args[]) throws Exception

After defining these contexts, you now need to re-compile with Clover and then re-run your tests. You can then
generate a report that excludes logging statements:

<clover-report>
 <current outfile="clover_html" title="My Coverage">
 <format type="html" filter="log,iflog"/>
 </current>
</clover-report>

This generates a source-level HTML report that excludes coverage from logging statements.

Using Spans
The attribute allows you to control which coverage recordings are merged to form a current coveragespan
report. By default, Clover includes all coverage data found. You can configure it to include a different span of
coverage recordings. The span attribute lets you do this.

The attribute takes an which tells Clover how far back in time since the last Clover compilation thatspan Interval
coverage recordings should be merged to build the report.

The attribute applies to the following Ant tasks or sub-elements thereof:span

< >clover-check
< >clover-historypoint
< >clover-log
< >clover-merge
< >clover-report

Specifying an Interval

The type is used to specify a period of time. It consists of a value and a unit specifier, eg. "3 days".interval
The interval type is very flexible about how it interprets the time unit. In general, the first letter is sufficient to
indicate the interval unit. For example, the previous example could be written as "3 d". The time ranges

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 56

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

supported are specified in the following table:

Unit specifier Abbreviation Example Values

second s 3 seconds
20s

minute m 5 minute
7 min, 11m

hour h 4 hours
2h

day d 7 days
365d

week w 4 weeks
10w

month mo 5.6 months
24mo

year y 100 years
5y

If no time unit is provided, the default unit of "days" is used. A numeric value must always be provided or an
exception will be thrown. Numeric values may be fractional (e.g. 5.6).

Sharing Report Formats

You can share report formats across a number of reports. This allows you to standardise on a set of report
formats and use these for all of your reports.
Standalone format elements are created using the type. These standalone types support< >clover-format
the same attributes and elements as the internal <format> elements of the task. To name< >clover-report
the format, use the standard Ant "id" attribute.

The following code declares two report formats:

<clover-format id="std.format" srclevel="true" type="pdf"/>
<clover-format id="bw.format" bw="true" srclevel="true" type="pdf"/>

In this example, the first format is for source level, PDF reports. It is named " ". The second format,std.format
" ", is essentially the same except that it specifies black-and-white output.bw.format
Once the format is declared with an identifier, it can be used by reference with a " " attribute. This is shownrefid
in the following report example:

<clover-report>
 <current summary="yes" outfile="report-current.pdf"
 title="Ant Coverage">
 <format refid="std.format"/>
 </current>
</clover-report>

This report, a summary report, uses the " " format defined above. The values in the std.format refid <forma
 elements can be an Ant property allowing selection of the report format at build time. The following is at>

Note
Due to the variable lengths of months and years, approximations are used for these values within
Clover. A month is considered to be 30.346 days and a year is considered to be 365.232 days. All other
units are exact.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 57

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

complete example:

<target name="report">
 <clover-format id="std.format" srclevel="true" type="pdf"/>
 <clover-format id="bw.format" bw="true" srclevel="true" type="pdf"/>
 <property name="format" value="std.format"/>
 <clover-report>
 <current summary="yes" outfile="report-current.pdf"
 title="Ant Coverage">
 <format refid="${format}"/>
 </current>
 <historical historydir="clover-hist" outfile="report-history.pdf"
 title="Ant Historical Coverage">
 <format refid="${format}"/>
 </historical>
</clover-report>
</target>

This example generated two reports, which share a format. The format defaults to the standard format, a colour
report. This default can be overriden from the command line. To generate black-and-white reports, use:

ant report \-Dformat=bw.format

Extracting Coverage Data programmatically

Using XPath with Clover's XML reports

Clover's XML reports provide detailed coverage data in a format that is easy to access programmatically using
XPath. XML coverage reports can be generated by the or Ant< >clover-report < >clover-historypoint
tasks. The following example XPath expressions show how to extract data from a Clover XML coverage report:

/coverage/project/metrics[@statements]

The above statement extracts the total number of statements in the project.

/coverage/project/metrics[@coveredstatements]

The above extracts the total number of covered statements in the project.

/coverage/project/package[name='com.foo.bar']/metrics[@statements]

The above extracts the total number of statements in the package .com.foo.bar

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 58

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

/coverage/project/package[name='com.foo.bar']/metrics[@coveredstatements]

The above extracts the total number of covered statements in the package . com.foo.bar

An XPath implementation is shipped with the JDK1.5 distribution. Third party implementations that work with
JDK1.4 and below include , and .Jaxen Dom4j JXP

The following code example (using the JDK1.5 implementation of XPath) demonstrates simple extraction of
coverage data from a Clover XML report: import javax.xml.xpath.*;

...

 XPath xpath = XPathFactory.newInstance().newXPath();
 String stmtExpr = "/coverage/project/metrics[@statements]";
 String coveredStmtExpr = "/coverage/project/metrics[@coveredstatements]";
 InputSource inputSource = new InputSource("coverage.xml");
 Double projectStatements = (Double) xpath.evaluate(expression, inputSource,
 XPathConstants.NUMBER);
 Double projectCoveredStatements = (Double) xpath.evaluate(expression, inputSource,
 XPathConstants.NUMBER);

 ...

6. Ant Task Reference

Installing the Clover Ant Tasks

Clover provides a set of Ant tasks to make project integration easy. To make these tasks available in your
project build file, you need to:

load the ' ' antlib by adding the following line to your build file:cloverlib.xml

<taskdef resource="cloverlib.xml" classpath="/path/to/clover.jar"/>

Make sure you change the above " " to point directly to your clover.jar./path/to/clover.jar

For further options, see also .Ant Installation Options

The tasks

< >clover-setup Installs Clover as the Ant . This means that Clover will be invokedbuild.compiler
whenever the Ant is used, resulting in instrumented compilation.<javac>

< >clover-instr Allows manual instrumentation of source files, for cases where the normal <clover-set
> integration approach can't be used.up

< >clover-report Produces coverage reports in different formats.

<clover-html-repo
>rt

Generates a HTML report with default settings.

<clover-pdf-report
>

Generates a PDF report with default settings.

http://creativecommons.org/licenses/by/2.5/au/
http://jaxen.org/
http://dom4j.org/
http://www.japisoft.com/jxpath/

Documentation for Clover 4.0 59

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-historypoi
>nt

Records a coverage history point for use in historical coverage reports.

<clover-snapshot
>

Generates a snapshot file used to assist Clover in optimizing the tests run in subsequent
build.

< >clover-merge Merges several Clover databases into one, to allow for combined reports to be
generated.

< >clover-check Tests project/package code coverage against criteria, optionally failing the build if the
criteria are not met.

< >clover-log Reports coverage results to the console at various levels.

< >clover-clean Deletes the coverage database and/or associated coverage records.

< >clover-env This task imports several useful Ant targets that can help you quickly integrate Clover
into many common Ant builds.

clover-check

Description

The task tests project/package code coverage against criteria, optionally failing the build if<clover-check>
the criteria are not met. This task needs to be run after coverage has been recorded.

Parameters

Attribute Description Required

codeType Since 3.1.6: Specifies which sources
shall be taken for calculation.

Valid values are: APPLICATION
(business code), TEST (test code), ALL
(business + test code).

No; Default value: APPLICATION.

conditionalTarget The target percentage conditional
coverage for the project.

At least one of , target methodTa
, or rget statementTarget con

 is required,ditionalTarget
unless nested elemenclover-check
ts are specified.

failureProperty Specifies the name of a property to be set
if the target is not met. If the target is not
met, the property will contain a text
description of the failure(s).

No.

filter comma or space separated list of
contexts to exclude when calculating
coverage. See .Using Coverage Contexts

No.

haltOnFailure Specifies if the build should be halted if
the target is not met.

No; default is " ".false

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 60

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

historydir Allows you to specify a location for
historical build data, along with a
configurable threshold expressed as a
percentage – used to cause the build to
fail if coverage has dropped. This attribute
is passed down to specified packages,
then the same test is done for these at the
package level.

No. Example:
historyDir="/history"
threshold="1%"

includeFailedTestCoverage Specifies whether to include failed test
coverage when calculating the total
coverage percentage.

No; defaults to " ".false

initstring The of the coverageinitstring
database.

No; If not specified here, Clover will
look in the default location (${bas

). If you haveedir}/.clover
specified an on the initstring <

 task, you must>clover-setup
ensure that is< >clover-setup
called prior to the execution of this
task.

methodTarget The target percentage method coverage
for the project.

At least one of , target methodTa
, or rget statementTarget con

 is required,ditionalTarget
unless nested eleclover-check
ments are specified.

span Specifies how far back in time to include
coverage recordings from since the last
Clover build. See .Using Spans

No; default includes "all coverage
data found".

statementTarget The target percentage statement
coverage for the project.

At least one of , target methodTa
, or rget statementTarget con

 is required,ditionalTarget
unless nested eleclover-check
ments are specified.

target The target percentage total coverage for
the project. e.g. " "10%

At least one of , target methodTa
, or rget statementTarget con

 is required,ditionalTarget
unless nested eleclover-check
ments are specified.

Nested elements of <clover-check>

<package>

Specifies a target for a named package.

Parameters

Important note on target, methodTarget, statementTarget, conditionalTarget
Comparison of actual value with a target percentage is performed with such numerical precision as
number of fractional digits set for a target percentage. A standard rounding is used
(BigDecimal.ROUND_HALF_EVEN).

For example, if actual coverage value is 99.9% then for the target="100%" a build will pass, whereas for
the target="100.000000%" a build will fail.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 61

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Attribute Description Required

conditionalTarget The target percentage conditional
coverage for the package.

At least one of , , target methodTarget statemen
 or is required.tTarget conditionalTarget

methodTarget The target percentage method
coverage for the package.

At least one of , , target methodTarget statemen
 or is required.tTarget conditionalTarget

name The name of the package. Either (but not both) of or is required.name regex

regex Regular expression to match
package names.

Either (but not both) of or is required.name regex

statementTarget The target percentage statement
coverage for the package.

At least one of , , target methodTarget statemen
 or is required.tTarget conditionalTarget

target The target percentage total
coverage for the package. e.g.
"10%"

At least one of , , target methodTarget statemen
 or is required.tTarget conditionalTarget

<testsources>

<testsources> is an that can be used to distinguish test source code from application source code.Ant fileset
All files included in the fileset will be displayed in the separate 'Test' node of the coverage tree. If omitted,
Clover's default test detection algorithm will be used to distinguish test sources.

<testResults>

An optional Ant containing a list of test result XML files.fileset

<testresults> is generally not required by most users, as the built-in test results will provide all required
information in the majority of cases. For more details please see ' '.Advanced Usage

Examples

<clover-check target="80%"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the build continues.

<clover-check target="80%"
 haltOnFailure="true"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the build fails.

<clover-check target="80%"
 failureProperty="coverageFailed"/>

Tests if total percentage coverage is at least 80%. If not, a message is logged and the project property coverag
 is set.eFailed

<clover-check target="80%"
 <package name="com.acme.killerapp.core" target="70%"/>
 <package name="com.acme.killerapp.ai" target="40%"/>
</clover-check>

Tests if:

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

Documentation for Clover 4.0 62

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

total percentage coverage for project is at least 80%.
total percentage coverage for package is at least 70%.com.acme.killerapp.core
total percentage coverage for package is at least 40%.com.acme.killerapp.ai

If any of these criteria are not met, a message is logged and the build continues.

<clover-check target="80%"
 filter="catch">
 <package name="com.acme.killerapp.core" target="70%"/>
 <package name="com.acme.killerapp.ai" target="40%"/>
</clover-check>

As above, but doesn't include coverage of catch blocks when measuring criteria.

<clover-check target="80%" conditionalTarget="90%"
 filter="catch">
 <package name="com.acme.killerapp.core" target="70%"/>
 <package name="com.acme.killerapp.ai" target="40%"/>
</clover-check>

As previous example, but also ensures that the project conditional coverage is at least 90%.

<clover-check>
 <package regex="com.acme.killerapp.core.*" target="70%"/>
</clover-check>

Tests if coverage for and all subpackages is at least 70%.com.acme.killerapp.core

clover-clean

Description

The task deletes the and associated .<clover-clean> coverage database coverage recording files

Parameters

Attribute Description Required

haltOnError Controls whether an error
(such as a failure to delete a
file) stops the build or is
merely reported to the screen
(" "/" ").true false

No; defaults to " ".false

initstring The initstring of the database
to clean.

No; if not specified here, Clover will use the default
location (). If you have specified${basedir}/.clover
an on the task, youinitstring <clover-setup>
must ensure that is called prior to the<clover-setup>
execution of this task.

keepdb Controls whether to keep the
coverage database file ("tru

"/" "). If " ", thee false false
coverage database will be
deleted.

No; defaults to " ".false

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 63

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

keepTestSnapshot Specifies whether the test
snapshot file should be kept
or deleted; defaults to true. ("

"/" ")true false

No; if not specified here, the last test snapshot will be
stored. \(i) This is not deleted between builds (unlike the

 file and the coverage files)..db

verbose Controls whether to show the
name of each deleted file ("t

"/" ").rue false

No; defaults to " ".false

Examples

<clover-clean/>

Deletes the coverage database and all of the coverage recordings.

<clover-clean verbose="true"/>

Deletes the coverage database and all of the coverage recordings, printing out a log statement for each file
deleted.

<clover-clean keepdb="true"/>

Deletes the coverage recordings but keeps the coverage database.

clover-env

Description

The task imports a set of standard Ant targets into the current project.<clover-env>

The following targets will be available:

Target Name Description

clover.all Runs clover.clean, with.clover, test, clover.report from a single target.

clover.clean Deletes the clover database and the

${clover.dest}

directory.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 64

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clover.current Generates an HTML and XML report to

${clover.dest}

using

${project.title}

.

clover.report Same as clover.current, however a history report will also be created, using the
historypoints in

${clover.project.historydir}

.

clover.save-history Saves a history point to

${clover.project.historydir}

with.clover Enables Clover on this build

clover.snapshot Saves a snapshot file to assist with unit test optimization

Alternatively, running: will display the list of targets available.$ ant -projecthelp

Parameters

This task has no parameters.

clover-historypoint

Description

The task records a coverage history point for use in .<clover-historypoint> historical coverage reports
The basic nesting of elements within the task is as follows:<clover-historypoint>

<clover-historypoint>
 < />fileset
 < />testsources
 < />testresults
</clover-historypoint>

Parameters

Attribute Description Required

date Specifies an override date for this history point.
This allows for generation of past historical data
for a project.

No; defaults to the timestamp
of the current coverage data.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 65

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

dateFormat Specifies a date format string for parsing the "d
" attribute. The string must contain a valid ate ja

 pattern.va.text.SimpleDateFormat

No; defaults to java.text.Simpl
 using theeDateFormat

default pattern and date
format symbols for the default
locale.

filter A comma or space separated list of contexts to
exclude when generating the historypoint. See

.Using Coverage Contexts

No.

historyDir The directory where historical data is stored. Yes.

includeFailedTestCoverage If true, all coverage attributed to a test that
failed will be included. If history-point
generation is taking a long time, you can speed
up the performance of your tests by setting this
value to ' '.true

No; defaults to " "false

initstring The of the coverage database.initstring No; if not specified here,
Clover will look in the default
location (${basedir}/.clo

). If you have specified anver
 on the initstring <clove

 task, you must>r-setup
ensure that <clover-setup

 is called prior to the>
execution of this task.

overwrite If true, existing history point for the same date
will be automatically overwritten.

No; defaults to " ".false

property If set, the name of the property to hold the
absolute path name of the history point file that
was created by this task.

No.

span Specifies how far back in time to include
coverage recordings from since the last Clover
build. See .Using Spans

No; default includes "all
coverage data found".

srcLevel Prevents excessive Clover data from being
loaded when generating a history point. This
should be used for large projects, where saving
a full source level history point is taking a long
time. Clover's history reports currently do not
use line level information. This means there is
no loss of functionality when srcLevel="false". In
the future however, line level information may
be used.

No; defaults to " "false

Nested elements of <clover-historypoint>

<fileset>

<clover-historypoint> supports nested filesets which control which source files are to be included in a
historypoint. Only classes which are from the source files in the fileset are included in the history point. This
allows history points to focus on certain packages or particular classes. By using Ant's fileset selectors, more
complicated selections are possible, such as the files which have recently changed, or files written by a
particular author.

http://creativecommons.org/licenses/by/2.5/au/
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Documentation for Clover 4.0 66

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<testsources>

<testsources> is an that can be used to distinguish test source code from application source code.Ant fileset
All files included in the fileset will be displayed in the separate 'Test' node of the coverage tree. If omitted,
Clover's default test detection algorithm will be used to distinguish test sources.

<testresults>

<testresults> is an optional that defines the location of all test result XML files for your project.Ant fileset
Currently, these will be used by to determine coverage data if the <clover-historypoint> includeFailed

 flag is set to false.TestCoverage

<testresults> is generally not required by most users, as the built-in test results will provide all required
information in the majority of cases. For more details please see ' '. Advanced Usage

Examples

<clover-historypoint historyDir="clover-historical"/>

Records a history point into the directory .PROJECT_DIR/clover-historical

<clover-historypoint historyDir="clover-historical"
 date="010724120856"
 dateFormat="yyMMddHHmmss"/>

Records a history point, with the effective date of 24/07/01 12:08:56.

<clover-historypoint historydir="history"
 filter="toString"
 includeFailedTestCoverage="false"
 property="clover.historypoint.path">
</clover-historypoint>

Records a history point that excludes all test coverage that is attributed to a failed test; clover.historypoin
 will contain the absolute file path of the history point that was created.t.path

<clover-historypoint historyDir="clover-historical">
 <testsources dir="src" include name="**/*Test.java"/>
</clover-historypoint>

Records a history point that recognises classes in the "src" directory as tests.

clover-html-report

Description

The task generates a full HTML report with sensible default settings. If configured, a <clover-html-report>
 is also generated prior to generation of the full report. history point

If you need more options, please use the task, which provides more functionality,<clover-report>

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

Documentation for Clover 4.0 67

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Parameters

Attribute Description Required

coverageCacheSize This is a performance tuning option, which is used to specify
the maximum size of coverage data kept in memory when
generating an HTML report. Accepts storage values such as
256m (256 megabytes) or 1g (1 gigabyte). Also accepts the
value "nocache" to force all coverage data to be loaded into
memory.

No. Default is
256m.

historydir The directory for Clover history points. If this attribute is set,
a new history point will be generated prior to the

 For more information, see generation of the full report. <clo
.ver-historypoint>

No.

historyIncludes An to select specific history point files within the Ant GLOB hi
 directorystoryDir

No. Default is clov
er-*.xml.gz

initstring The path to the Clover database. If not specified, Clover will
use the initstring set by a previous execution of <clover-set

 in the current build sequence. Otherwise, the defaultup/>
database location will be used.

No.

maxtestsperfile This limits the number of tests displayed for each file. No.

numThreads The number of threads to start when generating a HTML
report. A value of 0 will disable multi-threading for report
generation. This is a performance tuning option.

No. Default is 2.

outdir The directory to write the report to. Yes.

projectName Overrides the project name set in the Ant build file. This is
used for display purposes only.

No; defaults to the
project name of the
Ant build file.

showUniqueCoverage Calculate and show unique per-test coverage (for large
projects, this can take a significant amount of time). Defaults
to
 - for Clover 3.1.4 and oldertrue
 - for Clover 3.1.5 and newer.false

No.

testresultsdir The directory containing the XML results of the unit tests.
Clover will look for all files in this directory. TEST*.xml This

, as theattribute is generally not required by most users
built-in test results will provide all required information in the
majority of cases. For more details please see 'Advanced

'.Usage

No.

title The title to use in the report. No.

Examples

such as:

generating reports in HTML, PDF, JSON, XML formats
generating multiple reports linked with each other
generating custom charts, defining metrics, 'movers', overviews etc
pointing to source location different than during compilation

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/dirtasks.html#patterns

Documentation for Clover 4.0 68

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-html-report outdir="clover/report"/>

This is the simplest way to generate an HTML report. It will be written to the directory " ".clover/report

<clover-html-report outdir="build/clover/report"
 historydir="clover/historypoints"
 title="MyProject Coverage"/>

This will generate a report in the " " directory. A history point will be created in the "build/clover/report clo
" directory, and all history points in that directory will be used to generate the historicalver/historypoints

section of the report. The report will be titled " ".MyProject Coverage

clover-instr

Description

The task produces instrumented versions of sets of Java source files. These can then be<clover-instr>
compiled in place of the original source to produce an instrumented Java build.

The basic nesting of elements within the task is as follows:<clover-instr>

<clover-instr>
 < />distributedCoverage
 < />fileset
 < />methodcontext
 < />statementcontext
 < />profiles
 < >testsources
 < >testclass
 < />testmethod
 </ >testclass
 </ >testsources
</clover-instr>

Parameters

Attribute Description Required

destdir The directory into which Clover will write an instrumented copy of the
source code.

Yes.

initstring The Clover initString describes the location of the Clover coverage
database. Typically this is a relative or absolute file reference, e.g. ${ba

. If not specified it defaults to ,sedir}/build/clover.db .clover
relative to the project's base directory.

No.

flushinterval When the flushpolicy is set to interval or threaded this value is the
minimum period between flush operations (in milliseconds).

No.

The task is provided for users who can't make use of the standard <clover-instr> <clover-setup
 integration task. The task offers a simpler and less intrusive integration option for> <clover-setup>

most users.

Be aware that this element does not support Groovy code.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 69

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

flushpolicy This attribute controls how Clover flushes coverage data during a test
run. Valid values are , or . directed interval threaded

 — Coverage data is flushed at JVM shutdown, and after andirected
inline flush directive.

 — Coverage data is flushed as for , as well asinterval directed
periodically at a maximum rate based on the value of .flushinterval
This is a 'passive' mode in that flushing potentially occurs as long as
instrumented code is being executed.

 — Coverage data is flushed as for , as well asthreaded directed
periodically at a rate based on the value of . This is anflushinterval
'active' mode in that flushing occurs on a separate thread and is not
dependent on the execution of instrumented code.

For more information, see .Using a Flush Policy

No; defaults
to directe

.d

fullyQualifyJavaLang This should only be set to ' ' if you have defined a variable calledfalse
'java' in your source files. If false, Clover will instrument source files
without using fully qualified java.lang names.

No; defaults
to ' '.true

instrumentationLevel This setting can reduce accuracy to method level, to enhance the speed
of instrumentation, compilation & test execution. Valid values are
'method' and 'statement'.

No; defaults
to stateme

.nt

instrumentLambda Since 3.2.2. Whether Java 8 lambda functions shall be instrumented. If
instrumented, they're treated like normal methods (and can be shown in
HTML report and considered in code metrics, for example). Possible
values:

none - do not instrument lambda functions,
expression - instrument lambdas in expression-like form, e.g. "(a, b)
-> a + b",
block - instrument lambdas in code blocks, e.g. "(a, b) -> { return a +
b; }"
all - instrument all lambda functions.

 Due to Clover's restrictions related with code instrumentation and
javac compiler's type inference capabilities, you may get compilation
errors when expression-like lambda functions are passed to generic
methods or types. In such case disable instrumentation of
expression-like form (i.e. use the or setting). See the none block Java 8

 Knowledge Base article forcode instrumented by Clover fails to compile
more details.

No; defaults
to "all".

recordTestResults If set to ' ', test results will not be recorded; instead, results can befalse
added via the fileset at report time. For more details<testResults>
please see ' '.Advanced Usage

No; defaults
to ' '. true

relative This controls whether the parameter is treated as ainitstring
relative path or not.

No; defaults
to ' '.false

srcdir The directory of source code to instrument. Yes, unless
a nested cl

 elover-instr
ement is
used.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVERKB/Java+8+code+instrumented+by+Clover+fails+to+compile
https://confluence.atlassian.com/display/CLOVERKB/Java+8+code+instrumented+by+Clover+fails+to+compile

Documentation for Clover 4.0 70

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

source The source level to process source files at. It is recommended that
 you set this parameter, either here or on <javac> invocations.

No; defaults
to the Java
version
detected at
runtime.

Nested Elements of <clover-instr>

<distributedCoverage>

This element turns on Clover's distributed coverage feature, enabling the collection of per-test coverage data,
when your test environment requires more than one JVM ().Java Virtual Machine

Parameters

Attribute
name

Description Required

name The name of this configuration. No; defaults to 't
'cp-config

port The port the test JVM should listen on. No; defaults to '1
'198

host The hostname the test JVM should bind to. No; defaults to 'l
'ocalhost

timeout (a number) The amount of time (in milliseconds) to wait before a connection
attempt will fail.

No; defaults to '5
'000

numClients (a number) The number of clients that need to connect to the test server
before the tests will continue.

No; defaults to ' '0

retryPeriod (a number) The amount of time (in milliseconds) to wait before attempting
to reconnect in the event of a network failure.

No; defaults to '1
'000

 All attributes are optional.

<fileset>

Specifies a set of source files to instrument.

<methodContext>

Specifies a method Context definition. See for more information.Using Coverage Contexts

Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the
reserved context names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should
match the method signatures of methods you wish to include in this
context. Note that when method signatures are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

http://creativecommons.org/licenses/by/2.5/au/
http://en.wikipedia.org/wiki/Jvm

Documentation for Clover 4.0 71

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

maxComplexity Match a method to this pattern if its cyclomatic complexity is not
greater than maxComplexity. In other words - all methods with
complexity <= maxComplexity will be filtered out.

No.

maxStatements Match a method to this pattern if its number of statements is not
greater than maxStatements. In other words - all methods with
statements <= maxStaments will be filtered out.

No.

maxAggregatedComplexity Since 3.1.10. Match a method to this pattern if its aggregated
cyclomatic complexity is not greater than
maxAggregatedComplexity. In other words - all methods with
aggregated complexity <= maxAggregatedComplexity will be
filtered out. Aggregated complexity metric is a sum of the method
complexity and complexity of all anonymous inline classes
declared in the method.

No.

maxAggregatedStatements Since 3.1.10. Match a method to this pattern if its number of
aggregated statements is not greater than
maxAggregatedStatements. In other words - all methods with
aggregated statements <= maxAggregatedStaments will be filtered
out. Aggregated statements metric is a sum of the method
statements and statements of all anonymous inline classes
declared in the method.

No.

What is the difference between maxComplexity and maxAggregatedComplexity or maxStatements and
maxAggregatedStatements?

Aggregated metrics calculate method statements/complexity including the code of all anonymous inline classes
declared inside the method. Thanks to this, it is possible to distinguish between a trivial single-statement
method like:

int getNumber() {
 return number;
}

and a single-statement method which actually returns more complex data, like:

ActionListener getListener() {
 return new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("statement #1");
 System.out.println("statement #2");
 System.out.println("statement #3");
 }
 };
}

If you would use a method context filter with attribute, like the following:maxStatements

<methodContext name="trivial" regexp=".*" maxStatements="1">

then both and methods would be filtered-out, because each of them contains onlygetNumber() getListener()
one statement: "return <xxx>".

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 72

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If you would use new , for instance:maxAggregatedStatements

<methodContext name="trivial" regexp=".*" maxAggregatedStatements="1">

then the would be filtered-out and the method would be filtered out (because itgetNumber() getListener() not
contains 4 statements in total - 1 "return" statement from the method itself and 3 "System.out.println()"
statements from anonymous class).

Regular expression tip:

 If you would like to filter-out all methods, except those having a specific name, you could write a
negative-look-ahead regular expression. For example:

<methodContext name="trivial" regexp="^(?!.*(getRunnable|getListener)).*$"
maxStatements="1"/>

will filter-out all methods having not more than one statement, except those which are named or getRunnable g
etListener.

<statementContext>

Specifies a statement Context definition. See for more information.Using Coverage Contexts

Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the reserved context
names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should match statements you
wish to include in this context. Note that when statements are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

<profiles>

Since 3.1.11. Optional element. Defines a list of Clover profiles, which can be selected at runtime by providing a
 system property. Thanks to this you can change some of Clover's behaviour withoutclover.profile=<name>

code recompilation.

<profiles>
 <profile name="default" coverageRecorder="FIXED|GROWABLE|SHARED">
 <distributedCoverage/> <!-- optional -->
 </profile>
 <profile .../>
 <!-- more profiles -->
</profile>

This element does not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 73

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<profile>

Since 3.1.11. Contains a definition of a single runtime profile.

Parameters

Attribute Description Required

name The name for this profile; name must be unique among profiles. There must
be one profile named "default".

No.
Defaults to
"default".

coverageRecorder Type of coverage recorder which will be used for gathering coverage data
at runtime. Possible values: FIXED, GROWABLE, SHARED (case
insensitive).

 Warning: we strongly recommend using the default setting. Do not
change until you deeply understand .how it works

No.
Defaults to
"FIXED".

Nested elements

<distributedCoverage/>

Note: a definition in element has priority over the <profile>/<distributedCoverage> <clover-setup|clover-in
 element.str>/<distributedCoverage>

Selecting clover.profile at runtime

Clover profile is being selected at runtime using the following algorithm:

Are there any profiles defined in compiled code?
yes -

1. read the system property. is it defined?clover.profile
yes - use the value as profile name
no - use the "default" profile name

2. is the profile name found on list of defined profiles?
yes - use settings from this profile
no - (default coverage recorder etc...)use system settings

no - (default coverage recorder etc...)use system settings

So it fall-backs to default system settings in case of missing profile.

<testsources>

<testsources> is an which should only be used if Clover's is not adequate.Ant fileset default test detection
Clover's default test detection algorithm is used to distinguish test cases if this element is omitted.

Nested elements of <testsources>

<testclass>

<testclass> can be used to include only specific test classes.
Parameters

Attribute Description Required

To have test sources reported in a separate tree to your application code, use the eleme<testsources/>
nt in the task.<clover-report/>

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Testsources

Documentation for Clover 4.0 74

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

name A regex on which to match the test class's name. No.

super A regex on which to match the test class's superclass. No.

annotation A regex on which to match the test class's annotation. No.

package A regex on which to match the test class's package. No.

tag A regex on which to match the test class's javadoc tags. No.

 For more information about regular expressions, please visit http://java.sun.com/j2se/1.4.2/docs/api/java/util/r
.egex/Pattern.html#sum

<and>

<and> can be used to specify multiple instances of <testclass>, all of which must be matched for a class to be
detected as a test, e.g.:

<testsources dir="tests">
<and>
 <testclass annotation="Specification"/>
 <testclass annotation="Test"/>
</and>
<testsources>

In this example, a class will only be recognised as a test if it has " " " " annotations.Specification and Test
<or>

<or> can be used to specify multiple instances of <testclass>, any of which must be matched for a class to be
detected as a test, e.g.:

<testsources dir="tests">
<or>
 <testclass name=".*Spec"/>
 <testclass name=".*Test"/>
</or>
<testsources>

In this example, a class will be recognised as a test if its name matches " ", its name matches ".*Spec or .*Tes
".t

Nested elements of <testclass>

<testmethod>

<testmethod> can be used to perform more fine grained detection of test methods.

 Clover matches methods only; it does not match constructors ().CLOV-1339
Parameters

Attribute Description Required

name A regex on which to match the test method's name. No.

annotation A regex on which to match the test method's annotation. No.

tag A regex on which to match the test method's javadoc tags. No.

returntype A regex on which to match the return type of the method, e.g.:

" " will match any return type..*
" " will match methods with no return type.void

No.

http://creativecommons.org/licenses/by/2.5/au/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#sum
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#sum
https://jira.atlassian.com/browse/CLOV-1339

Documentation for Clover 4.0 75

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Note that you can include multiple instances of <testmethod>, in which case they will be treated as 'or' clauses,
e.g.:

<testsources dir="tests">
 <testclass>
 <testmethod annotation="Specification"/>
 <testmethod name="^should.*"/>
 <testmethod name="^must.*"/>
 </testclass>
<testsources>

In this example, a method will be recognised as a test if its annotation is " ", its nameSpecification or
matches " ", its name matches " ".^should* or ^must*

Examples

<clover-instr srcdir="src" destdir="instr"/>

Produce an instrumented copy of all source files in the into the . The Clover registry is at thesrcdir destdir
default location.

<clover-instr destdir="instr"/>
 <fileset dir="src">
 <include name="**/*.java"/>
 </fileset>
</clover-instr>

This example achieves the same as the first example, but using an embedded fileset.

<clover-instr destdir="instr"/>
 <testSources dir="src">
 <include name="**/*Test.java"/>
 <testclass name=".*Test">
 <testmethod name=".*Bag.*"/> <!-- only the Bag related tests -->
 </testclass>
 </testSources>
</clover-instr>

This example produces an instrumented copy which recognises all of the following as tests: classes in the
directory "src"; classes in files whose names end with "Test"; methods whose names contain with "Bag".

Interval Flushing

By default Clover will write coverage data to disk when the hosting JVM exits, via a shutdown hook. This is not
always practical, particularly when the application you are testing runs in an Application Server. In this situation,
you can configure Clover to use 'interval' flushing, where coverage data is written out periodically during
execution:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 76

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-instr flushpolicy="interval" flushinterval="5000" srcdir="src"
destdir="instr" />

The "flushinterval" defines in milliseconds the minimum interval between coverage writes.

Specifying the location of the Clover Database.

By default, Clover writes its to the directory relative to the project's . Tointernal database .clover basedir
override this location, use the attribute.initstring

<clover-instr initstring="clover-db/coverage.db" srcdir="src" destdir="instr"/>

This example will use as the location for the Clover database. Note that theclover-db/coverage.db
directory should exist before running this task.clover-db

Troubleshooting

Clover does not support parallel instrumentation

You cannot use <parallel/> task for code instrumentation, for instance:

<target name="instrument">
 <parallel>
 <clover-instr srcdir="module1" destdir="module1-instr" .../>
 <clover-instr srcdir="module2" destdir="module1-instr" .../>
 </parallel>
</target>

will produce error message like:

[clover] Error finalising instrumentation:
 [clover] java.io.IOException: Failed to move tmp registry file
/myproject/.clover/clover3_1_6.db.tmp to final registry file

clover-log

Description

The task reports coverage information to the console at different levels.<clover-log>

Parameters

Attribute Description Required

initstring The of theinitstring
coverage database.

No; if not specified here, Clover will use the default
location (). If you have specified${basedir}/.clover
an on the < > task, you mustinitstring clover-setup
ensure that < > is called prior the executionclover-setup
of this task.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 77

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

level Controls the level of detail
included in the report. Valid
values are , , summary class met

, hod statement

No; defaults to " ".summary

filter comma or space separated list of
contexts to ignore when
calculating coverage. See Using

.Coverage Contexts

No.

span Specifies how far back in time to
include coverage recordings from
since the last Clover build. See U

.sing Spans

No; defaults includes "all coverage data found".

codeType Since 3.1.6: Specifies which
sources shall be taken for
calculation. This attribute should
be used together with
<testSources> nested element.

Valid values are: APPLICATION
(business code), TEST (test
code), ALL (business + test
code).

No; Default value: APPLICATION.

showUnitTests Since 3.1.6: Show unit tests
summary in the report. Must be
used with codeType=ALL or
codeType=TEST.

No; Default value: false

outputProperty Since 3.1.6: Name of the Ant
property in which a clover-log
report will be stored, instead of
printing it to console.

No;

Nested elements

<fileset>

Specifies an Ant . Only these files will be used when generating the clover-log messages and coveragefileset
data.

<package>

Specifies a named package to restrict the report to. Multiple elements can be specified.<package>

Parameters

Attribute Description Required

name The name of the package to include. Yes.

<sourcepath>

Specifies an Ant path that Clover should use when looking for source files.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html

Documentation for Clover 4.0 78

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<testSources>

 Since 3.1.6: Specifies an Ant . These files will be treated as test code (codeType=TEST), all others will befileset
treated as business code (codeType=APPLICATION).

Examples

<clover-log/>

Prints a summary of code coverage to the console.

<clover-log>
 <package name="com.acme.killerapp.core"/>
 </clover-log>

Prints a summary of code coverage for the package com.acme.killerapp.core to the console.

<clover-log level="statement">
 <package name="com.acme.killerapp.core"/>
 </clover-log>

Prints detailed (source-level) code coverage information for the package to thecom.acme.killerapp.core
console.

<clover-log level="statement"
 filter="catch">
 <package name="com.acme.killerapp.core"/>
 </clover-log>

As above, but catch blocks will not be considered in coverage reporting.

<clover-log level="statement">
 <sourcepath>
 <pathelement path="/some/other/location"/>
 </sourcepath>
 </clover-log>

Prints source-level coverage report to the console. Clover will look for source files in the directory /some/other
./location

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html

Documentation for Clover 4.0 79

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-log codeType="APPLICATION">
 <fileset dir="src/main/java"/>
 <fileset dir="src/main/groovy"/>
 <fileset dir="src/test/java"/>
 <testSources dir="src/test/java"/>
</clover-log>

Collect coverage data from three directories: src/main/java, src/main/groovy and src/test/java. Test sources are
located in: src/test/java. Report coverage for business code only (codeType = APPLICATION), i.e. skip files from
src/test/java.

Sample output

Example for <clover-log showUnitTests="true" code="ALL".../>

Clover Coverage Report
Coverage Timestamp: Tue May 22 13:21:44 CEST 2012
Report for code : ALL

Coverage Overview -
Coverage:-
 Methods: 4/7 (57,1%)
 Statements: 8/14 (57,1%)
 Branches: 0/0 (-)
 Total: 57,1%
Complexity:-
 Avg Method: 1.0
 Density: 0.5
 Total: 7
Tests:-
 Tests number: 2
 Tests run: 2
 Tests passed: 2
 Tests failed: 0
 Tests errors: 0

By default, log output is written in plain text, for instance:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 80

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

but if you have a terminal supporting ANSI colors (Linux, for example) you can use property-Dansi.color=true
to get a report like this:

clover-merge

Description

The task merges several Clover databases into one, to allow for combined reports to be<clover-merge>
generated. The resultant database can be used with reporting tasks, such as or < >clover-report <clover-

, using the parameter.>log initstring

Parameters

Attribute Description Required

initstring The location to write the Clover coverage database resulting from the
merge.

Yes.

update If set to true and there is an existing database at , thatinitString
database will be included in the merge.

No. Defaults to 'fa
'.lse

updateSpan If update is true, this span is used when merging any existing database at i
.nitString

No. Defaults to 0
seconds.

Nested Elements of <clover-merge>

<cloverDb>

Specifies a Clover database to merge.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 81

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Parameters

Attribute Description Required

initstring The of the database to merge.initString Yes.

span Specifies how far back in time to include coverage recordings from
since the last Clover build for this database. See .Using Spans

No; default includes 'all
coverage data found'.

<cloverDbSet>

Specifies an Ant FileSet of Clover databases to merge. Apart from those shown below, parameters and
sub-elements are the same as for an .Ant FileSet

Parameters

See the Ant FileSet documentation for parameters and sub-elements available on FileSets.

Attribute Description Required

refid Lets you specify a that references a group of Clover database files. Thisfileset
references a fileset defined elsewhere.

No; defaults to
none.

span Specifies how far back in time to include coverage recordings from since the
last Clover build for this database. See .Using Spans

No; defaults to
'0 seconds'.

Examples

This example produces a merged database containing the measured coverage of project A and project B:

<clover-merge initString="mergedcoverage.db">
 <cloverDb initString="projectAcoverage.db"/>
 <cloverDb initString="projectBcoverage.db" span="30 mins"/>
 </clover-merge>

This example produces a merged database containing the measured coverage of all databases found under /h
:ome/projects

<clover-merge initString="mergedcoverage.db">
 <cloverDbSet dir="/home/projects" span="30 mins">
 <include name="**/coverage.db"/>
 </cloverDbSet>
 </clover-merge>

clover-pdf-report

Description

The task generates a PDF report with sensible default settings. If configured, a history<clover-pdf-report>
point is also generated prior to generation of the full report. For more configuration options, use the <clover-r

 task.>eport

Parameters

Attribute Description Required

outfile The filename to write the report to. Yes.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

Documentation for Clover 4.0 82

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

initstring The path to the Clover database. If not specified, Clover will use the setinitstring
by a previous execution of in the current build sequence.< >clover-setup
Otherwise, the default database location will be used.

No.

historydir The directory that contains any clover history points. If this attribute is set, a new
 For morehistory point will be generated prior to the generation of the full report.

information, see .< >clover-historypoint

No.

title The title to use in the report. No.

Examples

<clover-pdf-report outfile="clover_coverage.pdf"/>

This is the simplest way to generate a pdf report. It will be written to the file " ".clover_coverage.pdf

<clover-pdf-report outfile="clover_coverage.pdf" historydir="clover/historypoints"
title="MyProject Coverage"/>

This will generate a report in the current directory called " ". A history point will beclover_coverage.pdf
created in the " " directory, and all history points in that directory will be used toclover/historypoints
generate the historical section of the report. The report will be titled " ".MyProject Coverage

clover-report

Introduction

The task generates and reports in multiple formats.<clover-report> current historical

 If you do not require fine-grained control over your Clover reports, use the or < >clover-html-report <cl
 tasks.>over-pdf-report

On this page:

Introduction
Overview
Parameters
Nested elements

<current>
<historical>

Examples
Examples of Current Report configurations
Example of customising columns
Example of linked reports
Examples of Historical Report Configurations

References
Column Name Reference Table
Clover Expression Language

Overview

The basic nesting of elements within the task is as follows: (click any item for detailed user<clover-report>
documentation).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 83

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

< >clover-report
 < >current
 < >columns
 (one or more)columns
 </ />columns
 < />fileset
 < />format
 < />sourcepath
 < />testsources
 < />testresults
 </ >current
 < >historical
 < >added
 < >columns
 (a single)column
 </ />columns
 </ >added
 < >chart
 (one or more)columns
 </ />chart
 < />coverage
 < />format
 < />metrics
 < >movers
 < >columns
 (a single)column
 </ />columns
 </ >movers
 < />overview
 </ >historical
</ >clover-report

Parameters

The task generates and reports in multiple formats. Parameters for<clover-report> current historical
<clover-report>:

Attribute Description Required

coverageCacheSize This is a performance tuning option, which is
used to specify the maximum size of coverage
data kept in memory when generating a report.
Accepts storage values such as 256m (256
megabytes) or 1g (1 gigabyte). Also accepts the
value "nocache" to force all coverage data to be
loaded into memory.

No. Default is 256m.

initstring The initstring of the coverage database. No; if not specified here, Clover will
look in the default location (${based

). If you have specifiedir}.clover
an on the initstring <clover-s

 task, you must ensure >etup <clov
 is called prior the>er-setup

execution of this task.

failOnError If true, failure to generate a report causes a
build failure.

No; defaults to " ".true

projectName Overrides the project name set in the Ant build
file. This is used for display purposes only.

No; defaults to the project name of
the Ant build file.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 84

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Nested elements

These elements represent the actual reports to be generated. You can generate multiple reports by specifying
more than one of these inside a element. Each report will contain links to the other reports.<clover-report>
See . clover-report

<current>

Generates a current coverage report. Specify the report format using a nested element. Valid formatsFormat
are XML, HTML, PDF and JSON, although not all configurations support all formats. The default format is PDF if
summary="true", or XML if not. See .clover-report

Parameters for <current>

Attribute Description Required

alwaysReport If set to true, a report will be generated even in the absence of
coverage data.

No; defaults
to " ".false

charset The character set to use in the HTML reports. No. Default is
UTF-8

homepage Specifies the start page to use. This can be one of the
predefined pages: , , , dashboard overview aggregate test

, , or an arbitrary URL.results quickwins projectrisks

No; defaults
to "dashboar

".d

includeFailedTestCoverage Specifies whether or not to include coverage attributed to a test
that has failed.

No; default is
" ".false

maxTestsPerFile Specifies the maximum number of tests (ranked by coverage
contribution) to display on a source file report page. This
parameter can be used to reduce the size of reports for
projects with very large numbers of tests.

No; unlimited
if not
specified or -
1.

numThreads The number of threads to start when generating an HTML
report. A value of 0 will disable multi-threading for report
generation.

No. Default is
2.

outfile The outfile to write output to. If it does not exist, it is created.
Depending on the specified format, this either represents a
regular file (PDF, XML) or a directory (HTML, JSON).

Yes.

span Specifies how far back in time to include coverage recordings
from since the last Clover build. See .Using Spans

No; default
includes "all
coverage data
found".

summary Specifies whether to generate a summary report or detailed
report. Currently this applies for XML and PDF reports. See
srcLevel on the format element for HTML.

No; defaults
to " ".false

showLambdaFunctions Whether to present lambda functions in the report. If set to fals
, they are hidden on the methods' list, but code metrics stille

include them.

No; defaults
to " ".false

showInnerFunctions Whether to show inner functions, i.e. functions declared inside
methods in the report. This applies to Java8 lambda functions
for instance. If set to , then they are hidden on thefalse
methods' list, but code metrics still include them.

No; defaults
to " ".false

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 85

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

showUniqueCoverage Calculate and show unique per-test coverage (for large
projects, this can take a significant amount of time). Defaults to
 - for Clover 3.1.4 and oldertrue
 - for Clover 3.1.5 and newer.false

No.

timeout The amount of time to wait for report generation to finish before
failing the build. This value must be an .Interval

No. Default is
no timeout.

title Specifies a title for the report. No.

titleAnchor If specified, the report title will be rendered as a hyperlink to
this href.

No; default is
to not render
the report title
as a
hyperlink.

titleTarget Specifies the href target if the title is to be rendered as a
hyperlink (see above). titleAnchor HTML format only.

No; default is
" "._top

Nested elements of <current>

These elements represent individual sections of the 'current' report. If you do not specify any of these elements,
all the sections will be included in the report. If you specify more one or more of these elements, only the
specified sections will be included.

<columns>

Specifies the data columns to be included on summary pages. If not specified, default columns will be output.

Specific columns are defined as sub-elements to this one. See the .clover-report

Columns can be defined in a < /> Ant type for elsewhere in the build file.clover-columns referencing

Each column element takes an optional attribute which determines how the column's value is rendered.format
The attribute may be one of the following:format

raw — the actual value. Always used for total columns
bar — render a bar chart (40px wide) showing the coverage percentage
longbar — same as above, except 200px widebar
% — The coverage percentage value

Note that and are not valid formats for total columns.bar %

All column elements also take and/or threshold attributes. If the value for the column is outside themax min
threshold, the value will be highlighted.

Table of Column Names

Column Description Valid Format
Attributes

avgClassesPerFile The average number of classes per file. raw

avgMethodComplexity The average number of paths per method. raw

You may specify multiple <overview> and <coverage> elements in the 'current' report. These may have
different properties and include different elements. The charts will appear in the report in the same order
they appear in the <current> element. The <movers> element always appears at the end of the report
following these charts regardless of its location in the <current> element.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-columns
http://ant.apache.org/manual/using.html#references

Documentation for Clover 4.0 86

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

avgMethodsPerClass The average number of methods per class. raw

avgStatementsPerMethod The average number of statements per method. raw

complexity Cyclomatic Complexity is a measure of the number
of paths in your code.

raw

complexityDensity The average complexity per statement. raw

coveredBranches The amount of covered branches. raw; ; ;bar % longb
ar

coveredElements The total number of covered elements (branches +
statements) in the project.

raw; ; ;bar % longb
ar

coveredMethods The amount of covered methods. raw; ; ;bar % longb
ar

coveredStatements The amount of covered statements. raw; ; ;bar % longb
ar

expression The body of this element will be evaluated as an
arithmetic expression. All other column names can
be referenced. See Clover EL. This column takes an
optional title attribute.

raw

filteredElements The amount of elements that have been filtered out
of the report.

raw; ; ;bar % longb
ar

ncLineCount The total number of non-comment lines.
 When using Clover on Groovy source code, this

column consistently reports '0' at the moment.

raw

lineCount The total number of lines. raw

SUM Scientifically Untested Metric. This is very similar to
crap4j and is defined by this expression:

complexity^2 * ((1 -
%coveredElements/100)^3) +
complexity

raw

percentageCoveredContribution Helps you to work out how much an individual
package, file or class contributes (percentage-wise)
to the overall number of covered elements in the
project. Useful for spotting quick wins.

raw;bar;%;longbar

percentageUncoveredContribution Helps you to work out how much an individual
package, file or class contributes (percentage-wise)
to the overall number of uncovered elements in the
project. Useful for spotting quick wins.

raw;bar;%;longbar

totalBranches The total number of branches in the project. raw

totalChildren The number of lower order elements. The order of
elements is: Project, Package, File, Class, Method,
Statement

raw

totalClasses The total number of classes below the package,
project or file.

raw

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 87

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

totalElements The total number of elements (branches +
statements) in the project.

raw

totalFiles The total number of files below the package or
project.

raw

totalMethods The total number of methods in the project. raw

totalPercentageCovered The total coverage. raw; ; ;bar % longb
ar

totalStatements The total number of statements in the project. raw

uncoveredBranches Branches that were not executed. raw;bar;%;longbar

uncoveredElements Elements that were not executed. raw;bar;%;longbar

uncoveredMethods Methods that were not executed. raw;bar;%;longbar

uncoveredStatements Statements that were not executed. raw;bar;%;longbar

Column Attributes

Each of the above column elements can take the following attributes:

Attribute Description Required

format Determines how the value is rendered. Depending on the column, this may be one of
, , or .raw bar % longbar

No.

min Sets a minimum threshold on the value of the column. If the value is less than this it
will be highlighted.

No.

max Sets a maximum threshold on the value of the column. If the value is greater than this
it will be highlighted.

No.

scope Controls at which level in the report the column will appear. The scope attribute can
be one of: "package", "class" or "method". If omitted, the column will be used at every
level in the report. Note that only the following columns support the scope attribute: e

, , , , and xpression complexity complexityDensity coveredXXX uncoveredXXX tota
.lXXX

No.

Clover Expression Language
Clover Expression Language enables you to combine any of Clover's built-in column types to produce a custom
column. The following arithmetic operators are available: +, - , *, /, ^, (). Any of Clover's columns may be
referenced.
A percentage sign, '%', before a column identifier will evaluate to the percentage of that columns data, rather
than its raw value. e.g. %CoveredElements == (CoveredElements/TotalElements) * 100

Example:

<columns>
 <expression title="SUM">complexity^2 * ((1 - %coveredElements/100)^3) +
complexity</expression>
</columns>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 88

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<fileset>

<current> supports nested filesets which control which source files are to be included in a report. Only classes
which are from the source files in the fileset are included in the report. This allows reports to focus on certain
packages or particular classes. By using selectors, more complicated selections are possible, such asAnt fileset
the files which have recently changed, or files written by a particular author.

<format>

Specifies the output format and various options controlling the rendering of a report.

Parameters for <format>

Attribute Description Required

type The output format in which to render the report. Valid values are , pdf
, and . Note that not all report formats support all otherxml html json

attributes.

Yes, unless ref
 is set.id

refid The id of another format element that will be used for this report. See
.Sharing Report Formats

No.

id The id of this format element. No.

bw Specify that the report should be black-and-white. Supported by PDF
reports only.

No; defaults to "f
".alse

orderBy Specify how to order coverage tables. This attribute has no effect on
XML format. Valid values are:

 — Alpabetical. Alpha
 — Percent total coverage, ascending. PcCoveredAsc

 — Percent total coverage, descending. PcCoveredDesc
 — Total elements covered, ascending. ElementsCoveredAsc

 — Total elements covered, descending. ElementsCoveredDesc
 — Total elements uncovered, ascending. ElementsUncoveredAsc

 — Total elements uncovered,ElementsUncoveredDesc
descending.

No; defaults to P
cCoveredAsc.

noCache (HTML only) If true, insert nocache directives in HTML output. No; defaults to "f
".alse

srcLevel If true, include source-level coverage information in the report. No; defaults to "t
".rue

filter comma or space separated list of contexts to exclude when
generating coverage reports. See .Using Coverage Contexts

No.

pageSize (PDF only) Specify the page size to use. Valid values are , A4 LETTER
.

No; defaults to "A
".4

showEmpty If true, classes, files and packages that do not contain any executable
code (i.e. methods, statements, or branches) are included in reports.
These are normally not shown.

No; defaults to "f
".alse

reportStyle Since Clover 4.0. Style of the HTML report:

"adg" - new look & feelADG
"classic" - old JavaDoc-like report (deprecated)

No; defaults to
"adg".

tabWidth (Source level reports only) The number of space chars to replace TAB
characters with.

No; defaults to 4
.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
https://developer.atlassian.com/design/latest

Documentation for Clover 4.0 89

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

maxNameLength The maximum length in chars of package or classnames in the report.
Longer names will be truncated. A value < 0 indicates no limit.

No; defaults to
no limit.

callback The name of the callback function to wrap the JSON. If set to an
empty string, " ", then the JSON will not be wrapped.

No; default is
'processClover'.

<sourcepath>

Specifies an Ant path that Clover should use when looking for source files.

<testsources>

<testsources> is an that can be used to distinguish test source code from application source code.Ant fileset
All files included in the fileset will be displayed in the separate 'Test' node of the coverage tree. If omitted,
Clover's will be used to distinguish test sources.default test detection algorithm

<testresults>

<testresults> is an optional that Clover uses to integrate the results of your unit tests into theAnt fileset
report. The results should be generated using the task with an XML formatter.Ant junit

<testresults> is generally not required by most users, as the built-in test results will provide all required
information in the majority of cases. For more details please see ' '. Advanced Usage

<historical>

Generates a historical coverage report. Specify the report format using a nested Format element (see below).
Valid formats are HTML or PDF. The default format is HTML. Contents of the historical report are optionally
controlled by nested elements. See .clover-report

Parameters for <historical>

Attribute Description Required

title Specifies a title for the report. No.

titleAnchor if specified, the report title will be rendered as a hyperlink to
this href.

No; default is to not render
the report title as a
hyperlink.

titleTarget Specifies the href target if the title is to be rendered as a
hyperlink (see above). titleAnchor HTML format only

No; default is " "._top

charset The character set to use in the HTML reports. No. Default is UTF-8

dateFormat Specifies a date format string for parsing the "from" and "to"
fields. The string must contain a valid java.text.SimpleDateFor

 pattern.mat

No; default is set to java.tex
 usingt.SimpleDateFormat

the default pattern and date
format symbols for the
default locale.

from Specifies the date before which data points will be ignored.
The date must be specified either using the default java.text.Si

 for your locale or using the pattern defined inmpleDateFormat
the "dateFormat" attribute.

No.

historyDir The directory containing Clover historical data as produced by
the < > task.clover-historypoint

Yes.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/OptionalTasks/junit.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Documentation for Clover 4.0 90

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

historyIncludes An to select specific history point files within the Ant GLOB hi
 directorystoryDir

No; default is clover-*.x
ml.gz

json A true or false value. If set to true, then a file called histori
 will be created in the top level directorycal-json.js

containing some . The callback method will be: JSONP proce
 and takes a single objectssHistoricalCloverData JSON

parameter. The structure of the JSON is the same as used by
the . Google Visualization API More information.

No. Default is "false".

outfile The outfile to write output to. If it does not exist, it is created.
Depending on the specified format, this either represents a
regular file (PDF) or a directory (HTML).

Yes; default format is
HTML.

package Restricts the report to a particular package. No.

to Specifies the date after which data points will be ignored. The
date must be specified either using the default java.text.Simpl

 for your locale or using the pattern defined in theeDateFormat
"dateFormat" attribute.

No.

Nested elements of <historical>

These elements represent individual sections of the historical report. If you do not specify any of these elements,
all the sections will be included in the report. If you specify more one or more of these elements, only the
specified sections will be included. You may specify multiple and elements in the<overview> <coverage>
historical report. These may have different properties and include different elements. The charts will appear in
the report in the same order they appear in the element. The element always<historical> <movers>
appears at the end of the report following these charts regardless of its location in the element.<historical>

<added>

<added> displays new classes for the given column.

Parameters for <added>

Attribute Description Required

range The maximum number of classes to show. If the value is 5, then a
maximum of 5 "gainers" and 5 "losers" will be shown.

No; defaults to 5.

interval The time interval over which the delta should be calculated (from the last
history point). Uses the format. The range is automaticallyInterval
adjusted to the closest smaller interval available.

No; the default is to
take the delta of the
last two history points.

Nested elements of <added>

The <added> element can take a single element, allowing you to add one additional metric to the datacolumn
shown in <added>.

Example: <totalStatements>

You could add totalStatements to <added> with the following code.

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/dirtasks.html#patterns
http://en.wikipedia.org/wiki/Json#JSONP
http://en.wikipedia.org/wiki/Json
http://code.google.com/apis/visualization/documentation/reference.html#DataTable
http://confluence.atlassian.com/display/CLOVER/JSON+reference#JSONreference-CloverHistoricalDatainJSONP
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns

Documentation for Clover 4.0 91

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<added>
 <columns>
 <totalStatements/>
 </columns>
</added>

 No more than one additional column can be attached to <added>. The 'added' classes table will always
appear above the Movers section in the report - regardless of its order in the XML.

<chart>

A custom chart.

Parameters for <chart>

Attribute Description Required

title The title to use for the chart. No.

logscale Use a log scale for the y axis. No; default is set to 'true'.

xLabel The x label to use. No.

yLabel The x label to use. No.

width The width of the chart image. No; default is set to 640 pixels
(640px).

height The height of the chart image. No; default is set to 480 pixels
(480px).

upperBound The maximum y value to display. No; default is set to -1
(unbounded).

autoRange If set to 'true', the y-axis will be chosen automatically to fit
the data best.

No; default is 'false'.

Nested elements of <chart>

The <chart> element can take arbitrary columns, but the format of each column can be only 'raw', or '%'. The
supported columns are identical to . If no columns nested element is supplied,columns in the <current>element
then the default columns from the <coverage> element are used.

<coverage>

Note that the 'include' attribute from Clover 2.0 has been replaced by the <columns> element.

Specifies a chart showing percentage coverage over time.

This element does not support any attributes. The default behaviour is that everything is included.

<format>

Specifies the output format and various options controlling the rendering of a report.

Parameters for <format>

Attribute Description Required

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns

Documentation for Clover 4.0 92

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

type The output format in which to render the report. Valid values are , pdf
, and . Note that not all report formats support all otherxml html json

attributes.

Yes, unless ref
 is set.id

refid The id of another format element that will be used for this report. See
.Sharing Report Formats

No.

id The id of this format element. No.

bw Specify that the report should be black-and-white. Supported by PDF
reports only.

No; defaults to "f
".alse

orderBy Specify how to order coverage tables. This attribute has no effect on
XML format. Valid values are:

 — Alpabetical. Alpha
 — Percent total coverage, ascending. PcCoveredAsc

 — Percent total coverage, descending. PcCoveredDesc
 — Total elements covered, ascending. ElementsCoveredAsc

 — Total elements covered, descending. ElementsCoveredDesc
 — Total elements uncovered, ascending. ElementsUncoveredAsc

 — Total elements uncovered,ElementsUncoveredDesc
descending.

No; defaults to P
cCoveredAsc.

noCache (HTML only) If true, insert nocache directives in HTML output. No; defaults to "f
".alse

srcLevel If true, include source-level coverage information in the report. No; defaults to "t
".rue

filter comma or space separated list of contexts to exclude when
generating coverage reports. See .Using Coverage Contexts

No.

pageSize (PDF only) Specify the page size to use. Valid values are , A4 LETTER
.

No; defaults to "A
".4

showEmpty If true, classes, files and packages that do not contain any executable
code (i.e. methods, statements, or branches) are included in reports.
These are normally not shown.

No; defaults to "f
".alse

reportStyle Since Clover 4.0. Style of the HTML report:

"adg" - new look & feelADG
"classic" - old JavaDoc-like report (deprecated)

No; defaults to
"adg".

tabWidth (Source level reports only) The number of space chars to replace TAB
characters with.

No; defaults to 4
.

maxNameLength The maximum length in chars of package or classnames in the report.
Longer names will be truncated. A value < 0 indicates no limit.

No; defaults to
no limit.

callback The name of the callback function to wrap the JSON. If set to an
empty string, " ", then the JSON will not be wrapped.

No; default is
'processClover'.

<metrics>

Note that the 'include' attribute from Clover 2.0 has been replaced by the <columns> element.

Specifies a chart showing other metrics over time.

Parameters for <metrics>:

http://creativecommons.org/licenses/by/2.5/au/
https://developer.atlassian.com/design/latest

Documentation for Clover 4.0 93

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Attribute Description Required

logscale Specifies that a log scale be used on the Range Axis. This can be useful if you are
including, for example, LOC and packages in the same chart.

No; defaults
to " ".true

The default metrics included in the chart are loc, ncloc, methods and classes.

<movers>

Specifies a table that shows those classes that have a coverage delta higher than a specified threshold over a
specified time period. This can be specified multiple times, to track project movers over a given time frame, for
example, weeks and months.

Parameters for <movers>:

Attribute Description Required

threshold The absolute point change in percent coverage that class must have
changed by for inclusion. e.g " ".10%

No; defaults to 1%.

range The maximum number of classes to show. If the value is 5, then a
maximum of 5 "gainers" and 5 "losers" will be shown.

No; defaults to 5.

interval The time interval over which the delta should be calculated (from the last
history point). Uses the format. The range is automaticallyInterval
adjusted to the closest smaller interval available.

No; the default is to
take the delta of the
last two history points.

Nested elements of <movers>

The <movers> element can take a single element, allowing you to add one additional metric to the datacolumn
shown in <movers>.

Example: <totalStatements>

You could add totalStatements to <movers> with the following code.

<movers>
 <columns>
 <totalStatements/>
 </columns>
</movers>

 No more than one additional column can be added to <movers>.

<overview>

Specifies a section that provides summary of the total percentage coverage at the last history point. This
element does not support any attributes.

Examples

Examples of Current Report configurations

<clover-report>
 <current outfile="current.xml"/>
</clover-report>

Generates an XML report of the current coverage.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns

Documentation for Clover 4.0 94

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-report>
 <current outfile="current.pdf" summary="true">
 <format type="pdf"/>
 </current>
</clover-report>

Generates a PDF report of the current coverage.

<target name="report.json" depends="with.clover">
<clover-report>
 <current outfile="clover_json">
 <format type="json"/>
 <columns>
 <lineCount/>
 <ncLineCount/>
 </columns>
 </current>
</clover-report>
</target>

Generates a JSON report, where the chart elements are customised by specifying them with . See<columns>
the page.JSON reference

<clover-report>
 <current outfile="clover_html" title="My Project" summary="true">
 <format type="html"/>
 </current>
</clover-report>

Generates a summary report, in HTML with a custom title. Note that the "outfile" argument requires a directory
instead of a filename.

<clover-report>
 <current outfile="report-current" title="Coverage">
 <fileset dir="src/main/java">
 <exclude name="**/*Blah.java"/>
 </fileset>
 <format srclevel="true" type="html"/>
 </current>
 </clover-report>

Generates a HTML clover report and excludes all *Blah.java classes from the report.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 95

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-report>
 <current outfile="clover_html" title="Util Coverage">
 <format type="html" orderBy="ElementsCoveredAsc"/>
 <testsources dir="src/test" includes="**/*.java"/>
 </current>
</clover-report>

Generates a detailed coverage report in HTML with output ordered by total number of covered elements, rather
than percentage coverage. All source files under will be in the separate 'Test' coverage node in thesrc/test
report.

<clover-report>
 <current outfile="clover_html" title="My Project">
 <format type="html"/>
 <sourcepath>
 <pathelement path="/some/other/location"/>
 </sourcepath>
 </current>
</clover-report>

Generates a source-level report in HTML. Clover will search for source files in the directory /some/other/loc
.ation

<tstamp>
 <format property="report.limit" pattern="MM/dd/yyyy hh:mm aa"
 offset="-1" unit="month"/>
</tstamp>
<clover-report>
 <current outfile="report-current"
 title="Coverage since ${report.limit}">
 <fileset dir="src/main">
 <date datetime="${report.limit}" when="after"/>
 </fileset>
 <format srclevel="true" type="html"/>
 </current>
</clover-report>

This example generates a current coverage report for all files in the project that have changed in the last month.
Replacing the <date> selector with would generate a coverage<contains text="@author John Doe"/>
report for all code where John Doe is the author.

<clover-report>
 <current outfile="report-current" title="Coverage">
 <fileset dir="src">
 <patternset refid="clover.files"/>
 </fileset>
 <format srclevel="true" type="html"/>
</current>
</clover-report>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 96

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

In this example the standard Clover patternset is used to restrict the report to the currently included source files.
You could use this if you have changed the or definitions in the < > task and youexclude include clover-setup
have not removed the coverage database. It will prevent classes, currently in the database but now excluded,
from being included in the report. It is prudent, however, to delete the coverage database, coverage information
and recompile when you change these settings.

Example of customising columns

<clover-report>
 <current outfile="report-current" title="Coverage">
 <format type="html"/>
 <columns>
 <coveredMethods format="bar" min="75"/>
 <coveredStatements format="%"/>
 <coveredBranches format="raw"/>
 </columns>
 </current>
</clover-report>

Generates a HTML report that will only include a bar chart showing the percentage of methods covered, the
actual percentage of statements covered and the actual number of branches covered. If less than 75% of
methods are covered, those values will be highlighted.

Example of linked reports

<clover-report>
 <current outfile="report1" title="Coverage Report 1">
 <format type="html"/>
 <fileset dir="src">
 <patternset refid="clover.files"/>
 </fileset>
 </current>

 <current outfile="report2" title="Coverage Report 2">
 <format type="html"/>
 <fileset dir="othersrc">
 <patternset refid="other.clover.files"/>
 </fileset>
 </current>
 </clover-report>

Generates two HTML reports. Each of these reports will contain a link to the other.

Examples of Historical Report Configurations

<clover-report>
 <historical outfile="historical.pdf"
 historyDir="clover_history">
 <format type="pdf"/>
 </historical>
</clover-report>

Generates a historical report in PDF. Assumes that < > has generated more than one historyclover-historypoint

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 97

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

file in the directory " ". Writes the output to the file specified in the parameter.clover_history outfile

<clover-report>
 <historical outfile="two_months" title="My Project"
 from="020101" to="020301" dateFormat="yyMMdd"
 historyDir="clover_history">
 <format type="html"/>
 </historical>
</clover-report>

Generates a basic historical report in HTML for a certain time period. Clover will scan the and usehistoryDir
any history points that fall within the requested time period. The attribute will be treated as a outfile directory
; a file will be written into this directory. If the directory doesn't exist, it will be created.historical.html

<clover-report>
 <historical outfile="report.pdf" title="My Project"
 historyDir="clover_history">
 <overview/>
 <movers threshold="5%" range="20" interval="2w"/>
 <format type="pdf"/>
 </historical>
</clover-report>

Generates a PDF historical report that only includes an overview section (showing summary coverage at the last
history point) and a movers table showing classes that have a code coverage delta of greater than +- 5% over
the two weeks prior to the last history point. Will include at most 20 gainers and 20 losers.

References

Column Name Reference Table

Clover Expression Language

<added> element

<added> displays new classes for the given column.

Parameters for <added>

Attribute Description Required

range The maximum number of classes to show. If the value is 5, then a
maximum of 5 "gainers" and 5 "losers" will be shown.

No; defaults to 5.

interval The time interval over which the delta should be calculated (from the last
history point). Uses the format. The range is automaticallyInterval
adjusted to the closest smaller interval available.

No; the default is to
take the delta of the
last two history points.

Nested elements of <added>

The <added> element can take a single element, allowing you to add one additional metric to the datacolumn
shown in <added>.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns

Documentation for Clover 4.0 98

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Example: <totalStatements>

You could add totalStatements to <added> with the following code.

<added>
 <columns>
 <totalStatements/>
 </columns>
</added>

 No more than one additional column can be attached to <added>. The 'added' classes table will always
appear above the Movers section in the report - regardless of its order in the XML.

<chart> element

A custom chart.

Parameters for <chart>

Attribute Description Required

title The title to use for the chart. No.

logscale Use a log scale for the y axis. No; default is set to 'true'.

xLabel The x label to use. No.

yLabel The x label to use. No.

width The width of the chart image. No; default is set to 640 pixels
(640px).

height The height of the chart image. No; default is set to 480 pixels
(480px).

upperBound The maximum y value to display. No; default is set to -1
(unbounded).

autoRange If set to 'true', the y-axis will be chosen automatically to fit
the data best.

No; default is 'false'.

Nested elements of <chart>

The <chart> element can take arbitrary columns, but the format of each column can be only 'raw', or '%'. The
supported columns are identical to . If no columns nested element is supplied,columns in the <current>element
then the default columns from the <coverage> element are used.
<columns> element

Specifies the data columns to be included on summary pages. If not specified, default columns will be output.

Specific columns are defined as sub-elements to this one. See the .clover-report

Columns can be defined in a < /> Ant type for elsewhere in the build file.clover-columns referencing

Each column element takes an optional attribute which determines how the column's value is rendered.format
The attribute may be one of the following:format

raw — the actual value. Always used for total columns
bar — render a bar chart (40px wide) showing the coverage percentage
longbar — same as above, except 200px widebar
% — The coverage percentage value

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns
http://confluence.atlassian.com/display/CLOVER/clover-columns
http://ant.apache.org/manual/using.html#references

Documentation for Clover 4.0 99

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Note that and are not valid formats for total columns.bar %

All column elements also take and/or threshold attributes. If the value for the column is outside themax min
threshold, the value will be highlighted.

Table of Column Names

Column Description Valid Format
Attributes

avgClassesPerFile The average number of classes per file. raw

avgMethodComplexity The average number of paths per method. raw

avgMethodsPerClass The average number of methods per class. raw

avgStatementsPerMethod The average number of statements per method. raw

complexity Cyclomatic Complexity is a measure of the number
of paths in your code.

raw

complexityDensity The average complexity per statement. raw

coveredBranches The amount of covered branches. raw; ; ;bar % longb
ar

coveredElements The total number of covered elements (branches +
statements) in the project.

raw; ; ;bar % longb
ar

coveredMethods The amount of covered methods. raw; ; ;bar % longb
ar

coveredStatements The amount of covered statements. raw; ; ;bar % longb
ar

expression The body of this element will be evaluated as an
arithmetic expression. All other column names can
be referenced. See Clover EL. This column takes an
optional title attribute.

raw

filteredElements The amount of elements that have been filtered out
of the report.

raw; ; ;bar % longb
ar

ncLineCount The total number of non-comment lines.
 When using Clover on Groovy source code, this

column consistently reports '0' at the moment.

raw

lineCount The total number of lines. raw

SUM Scientifically Untested Metric. This is very similar to
crap4j and is defined by this expression:

complexity^2 * ((1 -
%coveredElements/100)^3) +
complexity

raw

percentageCoveredContribution Helps you to work out how much an individual
package, file or class contributes (percentage-wise)
to the overall number of covered elements in the
project. Useful for spotting quick wins.

raw;bar;%;longbar

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 100

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

percentageUncoveredContribution Helps you to work out how much an individual
package, file or class contributes (percentage-wise)
to the overall number of uncovered elements in the
project. Useful for spotting quick wins.

raw;bar;%;longbar

totalBranches The total number of branches in the project. raw

totalChildren The number of lower order elements. The order of
elements is: Project, Package, File, Class, Method,
Statement

raw

totalClasses The total number of classes below the package,
project or file.

raw

totalElements The total number of elements (branches +
statements) in the project.

raw

totalFiles The total number of files below the package or
project.

raw

totalMethods The total number of methods in the project. raw

totalPercentageCovered The total coverage. raw; ; ;bar % longb
ar

totalStatements The total number of statements in the project. raw

uncoveredBranches Branches that were not executed. raw;bar;%;longbar

uncoveredElements Elements that were not executed. raw;bar;%;longbar

uncoveredMethods Methods that were not executed. raw;bar;%;longbar

uncoveredStatements Statements that were not executed. raw;bar;%;longbar

Column Attributes

Each of the above column elements can take the following attributes:

Attribute Description Required

format Determines how the value is rendered. Depending on the column, this may be one of
, , or .raw bar % longbar

No.

min Sets a minimum threshold on the value of the column. If the value is less than this it
will be highlighted.

No.

max Sets a maximum threshold on the value of the column. If the value is greater than this
it will be highlighted.

No.

scope Controls at which level in the report the column will appear. The scope attribute can
be one of: "package", "class" or "method". If omitted, the column will be used at every
level in the report. Note that only the following columns support the scope attribute: e

, , , , and xpression complexity complexityDensity coveredXXX uncoveredXXX tota
.lXXX

No.

Clover Expression Language
Clover Expression Language enables you to combine any of Clover's built-in column types to produce a custom

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 101

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

column. The following arithmetic operators are available: +, - , *, /, ^, (). Any of Clover's columns may be
referenced.
A percentage sign, '%', before a column identifier will evaluate to the percentage of that columns data, rather
than its raw value. e.g. %CoveredElements == (CoveredElements/TotalElements) * 100

Example:

<columns>
 <expression title="SUM">complexity^2 * ((1 - %coveredElements/100)^3) +
complexity</expression>
</columns>

<format> element

Specifies the output format and various options controlling the rendering of a report.

Parameters for <format>

Attribute Description Required

type The output format in which to render the report. Valid values are , pdf
, and . Note that not all report formats support all otherxml html json

attributes.

Yes, unless ref
 is set.id

refid The id of another format element that will be used for this report. See
.Sharing Report Formats

No.

id The id of this format element. No.

bw Specify that the report should be black-and-white. Supported by PDF
reports only.

No; defaults to "f
".alse

orderBy Specify how to order coverage tables. This attribute has no effect on
XML format. Valid values are:

 — Alpabetical. Alpha
 — Percent total coverage, ascending. PcCoveredAsc

 — Percent total coverage, descending. PcCoveredDesc
 — Total elements covered, ascending. ElementsCoveredAsc

 — Total elements covered, descending. ElementsCoveredDesc
 — Total elements uncovered, ascending. ElementsUncoveredAsc

 — Total elements uncovered,ElementsUncoveredDesc
descending.

No; defaults to P
cCoveredAsc.

noCache (HTML only) If true, insert nocache directives in HTML output. No; defaults to "f
".alse

srcLevel If true, include source-level coverage information in the report. No; defaults to "t
".rue

filter comma or space separated list of contexts to exclude when
generating coverage reports. See .Using Coverage Contexts

No.

pageSize (PDF only) Specify the page size to use. Valid values are , A4 LETTER
.

No; defaults to "A
".4

showEmpty If true, classes, files and packages that do not contain any executable
code (i.e. methods, statements, or branches) are included in reports.
These are normally not shown.

No; defaults to "f
".alse

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 102

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

reportStyle Since Clover 4.0. Style of the HTML report:

"adg" - new look & feelADG
"classic" - old JavaDoc-like report (deprecated)

No; defaults to
"adg".

tabWidth (Source level reports only) The number of space chars to replace TAB
characters with.

No; defaults to 4
.

maxNameLength The maximum length in chars of package or classnames in the report.
Longer names will be truncated. A value < 0 indicates no limit.

No; defaults to
no limit.

callback The name of the callback function to wrap the JSON. If set to an
empty string, " ", then the JSON will not be wrapped.

No; default is
'processClover'.

<movers> element

Specifies a table that shows those classes that have a coverage delta higher than a specified threshold over a
specified time period. This can be specified multiple times, to track project movers over a given time frame, for
example, weeks and months.

Parameters for <movers>:

Attribute Description Required

threshold The absolute point change in percent coverage that class must have
changed by for inclusion. e.g " ".10%

No; defaults to 1%.

range The maximum number of classes to show. If the value is 5, then a
maximum of 5 "gainers" and 5 "losers" will be shown.

No; defaults to 5.

interval The time interval over which the delta should be calculated (from the last
history point). Uses the format. The range is automaticallyInterval
adjusted to the closest smaller interval available.

No; the default is to
take the delta of the
last two history points.

Nested elements of <movers>

The <movers> element can take a single element, allowing you to add one additional metric to the datacolumn
shown in <movers>.

Example: <totalStatements>

You could add totalStatements to <movers> with the following code.

<movers>
 <columns>
 <totalStatements/>
 </columns>
</movers>

 No more than one additional column can be added to <movers>.
JSON reference

This page documents Clover-for-Ant's implementation of JSON data and how to make use of it.

On this page:

Why JSON?
JSON data format

Current report
Historical report

http://creativecommons.org/licenses/by/2.5/au/
https://developer.atlassian.com/design/latest
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns

Documentation for Clover 4.0 103

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Examples of JSON report usage
Clover Historical Data in JSONP

Why JSON?

The is supported as an output type in Clover specifically to create integration opportunities withJSON format
other applications. The JSON data from Clover is easy to manipulate programmatically, allowing innovative
developers to use it for displaying or processing their coverage data in novel ways.

Clover-Ant code for JSON output

<target name="report.json" depends="with.clover">
<clover-report>
 <current outfile="clover_json">
 <format type="json"/>
 <columns>
 <lineCount/>
 <ncLineCount/>
 </columns>
 </current>
</clover-report>
</target>

JSON data format

Current report

Code snippet

<clover-report>
 <current outfile="${clover.report}">
 <format type="json"/>
 </current>
</clover-report>

Files generated for a current report

http://creativecommons.org/licenses/by/2.5/au/
http://en.wikipedia.org/wiki/Json

Documentation for Clover 4.0 104

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<json_report_directory>
 <package/name/directory>
 aggregate-pkg-risks.js - the aggregated "Top Risks" cloud map
for a package (including sub-packages)
 aggregate-quick-wins.js - the aggregated "Quick Wins" cloud map
for a package (including sub-packages)
 <source file>.js - detail data for a source file (hit
counts, statistics)
 package.js - package summary (list of classes +
package statistics)
 pkg-risks.js - the "Package Risks" cloud map for a
package (without sub-packages)
 quick-wins.js - the "Quick Wins" cloud map for a
package (without sub-packages)
 colophon.js - build time stamp etc
 project.js - project summary (list of packages +
projects statistics)
 proj-risks.js - the "Project Risks" cloud map for a
project
 quick-wins.js - the "Quick Wins" cloud map for a
project

Format of a source file summary ()"<source file>.js"

processClover ({
 "id": "com_cenqua_samples_money_Money_java", // name of source
files, dots and slashes replaced by underscores
 "lines": ["", "", "157", "157"], // hit counts for each
source line
 "stats": { // statistics, -1 means
no data or not applicable
 "Complexity": 18,
 "CoveredElements": 42,
 "ErroneousTests": 0,
 "FailingTests": 0,
 "PassingTests": 0,
 "PcErroneousTests": -1,
 "PcFailingTests": -1,
 "PcPassingTests": -1,
 "TestExecutionTime": 0,
 "Tests": 0,
 "TotalPercentageCovered": 89.3617,
 "UncoveredElements": 5
 }
});

Format of a package summary ()package.js

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 105

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

processClover ({
 "children":["IMoney.java","MoneyBag.java","Money.java"], // list of
files in the packages
 "name":"com.cenqua.samples.money", // name of
the package
 "stats": { //
statistics
 "AvgClassesPerFile":1,
 "AvgMethodComplexity":1.7419355,
 "AvgMethodsPerClass":10.333333,
 "AvgStatementsPerMethod":3.064516,
 "ComplexityDensity":0.56842107,
 "ComplexityToCoverage":58,
 "CoveredBranches":39,
 "CoveredMethods":31,
 "CoveredStatements":90,
 "FilteredElements":0,
 "LineCount":286,
 "NcLineCount":183,
 "PercentageCoveredContribution":100,
 "PercentageUncoveredContribution":100,
 "TotalBranches":46,
 "TotalChildren":3,
 "TotalClasses":3,
 "TotalElements":172,
 "TotalFiles":3,
 "TotalMethods":31,
 "TotalPackages":0,
 "TotalStatements":95,
 "UncoveredBranches":7,
 "UncoveredMethods":0,
 "UncoveredStatements":5
 // ... plus attributes as for a source file
 }
});

Format of a project summary ()project.js

processClover ({
 "children":["com/cenqua/samples/money/"], // list of
packages
 "name":"Clover database Pt gru 21 2012 09:22:03 CET", // name of
the report
 "stats": { // statistics
 // ... attributes as for a package
 }
});

Format of top risks ()proj-risks.js, pkg-risks.js, aggregate-pkg-risks.js

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 106

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

processClover ({
 "axis": { // X-Y axis description
 "x": {
 "max":211,"min":128,"title":"Average Method Complexity"
 },
 "y": {
 "max":10,"min":5,"title":"Coverage"
 }
 },
 "classes":[// values for a chart

{"name":"Money","path":"com/cenqua/samples/money/Money","x":128,"y":10},

{"name":"MoneyBag","path":"com/cenqua/samples/money/MoneyBag","x":211,"y
":5}]
});

Format of quick wins ()quick-wins.js, aggregate-quick-wins.js

processClover ({
 "axis": { // X-Y axis description
 "x": {
 "max":125,"min":47,"title":"# Elements"
 },
 "y": {
 "max":7,"min":5,"title":"# Elements Untested"
 }
 },
 "classes":[// values for a chart

{"name":"Money","path":"com/cenqua/samples/money/Money","x":47,"y":5},

{"name":"MoneyBag","path":"com/cenqua/samples/money/MoneyBag","x":125,"y
":7}]
});

Historical report

Code snippet

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 107

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-report>
 <historical outfile="${clover.report}" historydir="${historydir}" json="true">
<!-- json="true" generates historical-json.js file -->
 <format type="html"/> <!-- Note that historical report does not handle format
type="json" -->
 <!-- ... -->
 </historical>
</clover-report>

Format of historical-json.js file

processHistoricalCloverData ({
 "name": "money_demo", // name of the project
 "table": [{
 "cols": [// list of available metrics and their data format
 {
 "id": "timestamp",
 "label": "Date",
 "type": "date"
 },
 {
 "id": "FilteredElements",
 "label": "% Filtered",
 "type": "number"
 },
 // ...
],
 "rows": [// data
 {"c": [{
 "f": "21.12.12 09:02",
 "v": new Date(1356076936171)
 }, {
 "f": "0%",
 "v": 0
 },
 // ...
]}
 }]
});

Examples of JSON report usage

JSON for a file page:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 108

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

processClover ({
 "lines": ["", "", "10", "10", "10", "", "", "16", "1", "1", "1", "", "", "", "",
"22", "22", "5678", "5678", "1", "1"],
 "stats": {
 "Complexity": 22,
 "TotalPercentageCovered": 100,
 "CoveredElements": 63,
 "UncoveredElements": 0
 },
 "id": "org_apache_commons_codec_net_BCodec_java"
}
);

The "lines" array contains the hit counts for each line in the BCodec.java file.

JSON in an HTML page:

<!-- Define the callback function before including the java.js for the file you
wish to process. -->
 <script type="text/javascript">
 function processClover(obj) {
 alert(obj.id);
 alert(obj.stats.CoveredElements);
 alert(obj.stats.Complexity);
 alert(obj.lines);
 }
 </script>
<!-- Now, include as many java.js files as you wish. Each will call your
"processClover" callback function above. -->
 <script type="text/javascript"

src="http://downloads.atlassian.com/software/clover/samples/codec/org/apache/common
s/codec/StringEncoderAbstractTest.java.js">
 </script>
 <script type="text/javascript"

src="http://downloads.atlassian.com/software/clover/samples/codec/org/apache/common
s/codec/net/BCode.java.js">
 </script>

JSON live demo
This example uses JavaScript alerts to display the JSON data. to run the live demo.Click here

Clover Historical Data in JSONP

You can also access Clover historical data using JSON or . If your coverage data is available online, youJSONP
could view your coverage inside a Google Gadget.

Using this data, you can create your own visualisations in Javascript or HTML. The data from Clover is
compatible with the .Google Visualisation API

Basic example:

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/download/attachments/132382959/JSON_live_demo.html
http://en.wikipedia.org/wiki/JSONP#JSONP
http://code.google.com/apis/visualization/

Documentation for Clover 4.0 109

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

table: {
 cols: [{id: 'timestamp', label: 'Date', type: 'date'}, ...],
 rows: [{c:[{v: new Date(0), f: '1 January 1970 00:00'}, ...]}]
 }

This is the basic JSON object produced by Clover. The above JSON object may be passed directly to a google
 constructor like so:.visualization.DataTable

new google.visualization.DataTable(json.table[0], 0.5);

Example for use with Javascript:

var data = new google.visualization.DataTable(json.table[0], 0.5);
 var chart = new
google.visualization.AreaChart(document.getElementById('chart_div'));
 chart.draw(data, {width: 800, height: 400, legend: 'bottom', title:
'Clover Historical Chart'});

Example Clover Gadget:

The screenshot below shows Clover historical data in a Gadget:

The XML source for this gadget is as follows:

http://labs.atlassian.com/gadgets/npellow/src/clover-gadget.xml

Screenshot: Clover in a Google Gadget

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 110

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Basic Clover Confluence Integration

Embedding Clover Data into a Confluence Page

There is currently no native support for embedding Clover in Confluence. Many use cases can be achieved
however by using the .{html} macro

The following are examples of displaying live Clover data directly in Confluence.

Clover Dashboard

{html}
<iframe

src="http://downloads.atlassian.com/software/clover/samples/lucene/dashboard.html"
 width="100%" height="600px"/>
{html}

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/DOC/HTML+Macro

Documentation for Clover 4.0 111

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Project Risks Coverage Cloud

{html}
<iframe

src="http://downloads.atlassian.com/software/clover/samples/lucene/proj-risks.html"
 width="100%" height="600px"/>
{html}

clover-setup

On this page:

Description
Parameters
Nested Elements

<distributedCoverage>
<files>
<fileset>
<methodContext>
<statementContext>
<profiles>
<testsources>

Examples
Troubleshooting

Description

The task initialises Clover for use with your project.<clover-setup>

The basic nesting of elements within the task is as follows:<clover-setup>

< >clover-setup
 < />distributedCoverage
 < />files
 < />fileset
 < />methodcontext
 < />statementcontext
 < />profiles
 < > testsources advanced users only
 < >testclass
 < />testmethod
 </ >testclass
 </ >testsources
</clover-setup>

Parameters

All attributes of the element support Java. However, as indicated in the last column of the<clover-setup>
following table, some of these attributes do not support Groovy.

Attribute Description Required Groovy
Support

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 112

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clovercompiler After instrumentation, Clover hands off compilation to the
standard Ant compiler adapter (or the compiler specified by
the Ant property). This attribute specifiesbuild.compiler
the adapter to use. It takes the same values as the standard
Ant property. If you wish to specify anbuild.compiler
alternative compiler, you can either set the build.compile

 property or use this attribute.r

No.

enabled This controls whether Clover will instrument code during code
compilation. This attribute provides a convenient control point
to enable or disable Clover from the command line.

No; defaults
to ' '.true

flushinterval When the flushpolicy is set to or thisinterval threaded
value is the minimum period between flush operations (in
milliseconds)

No.

flushpolicy This attribute controls how Clover flushes coverage data
during a test run. Valid values are , , or directed interval

. threaded

 — Coverage data is flushed at JVM shutdown,directed
and after an inline flush directive.

 — Coverage data is flushed as fordirected, asinterval
well as periodically at a based on the value of maximum rate

. This is a 'passive' mode in that flushingflushinterval
potentially occurs as long as instrumented code is being
executed.

 — Coverage data is flushed as for , asthreaded directed
well as periodically at a rate based on the value of flushint

. This is an 'active' mode in that flushing occurs on aerval
separate thread and is not dependent on the execution of
instrumented code.

For more information, see .Using a Flush Policy

No; defaults
to 'direct

'.ed

fullyQualifyJavaLang This should only be set to ' ' if you have defined afalse
variable called 'java' in your source files. If false, Clover will
instrument source files without using fully qualified java.lan

 names.g

No; defaults
to ' '.true

initstring The Clover initString describes the location of the Clover
. Typically this is a relative or absolute filecoverage database

reference, e.g. . If not${basedir}/build/clover.db
specified it defaults to , relative to the.clover/clover.db
project's base directory.

No.

instrumentationLevel This setting can reduce accuracy to method level, to enhance
the speed of instrumentation, compilation & test execution.
Valid values are ' ' and ' '.method statement

No; defaults
to stateme

.nt

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 113

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

instrumentLambda Since 3.2.2. Whether Java 8 lambda functions shall be
instrumented. If instrumented, they're treated like normal
methods (and can be shown in HTML report and considered
in code metrics, for example). Possible values:

none - do not instrument lambda functions,
expression - instrument lambdas in expression-like form,
e.g. "(a, b) -> a + b",
block - instrument lambdas in code blocks, e.g. "(a, b) -> {
return a + b; }"
all - instrument all lambda functions.

 Due to Clover's restrictions related with code
instrumentation and javac compiler's type inference
capabilities, you may get compilation errors when
expression-like lambda functions are passed to generic
methods or types. In such case disable instrumentation of
expression-like form (i.e. use the or setting). Seenone block
the KnowJava 8 code instrumented by Clover fails to compile
ledge Base article for more details.

No; defaults
to "all".

preserve A boolean attribute which controls whether the instrumented
source will be retained after compilation.

No; defaults
to ' '.false

recordTestResults If set to ' ', test results will not be recorded; instead,false
results can be added via the fileset at<testResults>
report time. For more details please see ' '.Advanced Usage

No; defaults
to ' '. true

relative This controls whether the initstring parameter is treated as a
relative path or not.

No; defaults
to ' '.false

source The default source level to process source files at. Note that
setting the source attribute on the target will<javac>
override this setting.

No.

tmpdir The directory into which Clover will write an instrumented
copy of the source code.

No.

It is important to note that the Clover compiler adapter still picks up its settings from the set of Clover Ant
properties. The task provides a convenient method to set these properties. This means that<clover-setup>
builds that use the Clover 1.0 property set will continue to operate as expected.

 Do not set the ' ' attribute on the task as this overrides the Clover compiler set up by compiler <javac/> <c
. Use the ' ' attribute instead.lover-setup> clovercompiler

Nested Elements

<distributedCoverage>

This element, which supports both Java and Groovy, turns on Clover's distributed coverage feature, enabling the
collection of per-test coverage data, when your test environment requires more than one JVM (Java Virtual

).Machine

Parameters

Attribute
name

Description Required

name The name of this configuration. No; defaults to 't
'cp-config

port The port the test JVM should listen on. No; defaults to '1
'198

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVERKB/Java+8+code+instrumented+by+Clover+fails+to+compile
http://en.wikipedia.org/wiki/Jvm
http://en.wikipedia.org/wiki/Jvm

Documentation for Clover 4.0 114

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

host The hostname the test JVM should bind to. No; defaults to 'l
'ocalhost

timeout (a number) The amount of time (in milliseconds) to wait before a connection
attempt will fail.

No; defaults to '5
'000

numClients (a number) The number of clients that need to connect to the test server
before the tests will continue.

No; defaults to ' '0

retryPeriod (a number) The amount of time (in milliseconds) to wait before attempting
to reconnect in the event of a network failure.

No; defaults to '1
'000

 All attributes are optional.

<files>

An Ant patternset, relative to the top level package (e.g. com/atlassian/clovertest), element which controls which
files are included or excluded from Clover instrumentation. Use this when you wish to exclude files based on
packages.

<fileset>

As of Clover 1.2, also supports multiple Ant <filesets>. These give greater flexibility in<clover-setup>
specifying which source files are to be instrumented by Clover. This is useful when you have more than one
source base and only want some of those source bases to be instrumented. This can be difficult to setup with
patterns. Filesets also allow much greater flexibility in specifying which files to instrument by facilitating the use
of Ant's fileset selectors. Use this when you wish to exclude files based on directory structure.

<methodContext>

Specifies a method Context definition. See for more information.Using Coverage Contexts

Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the
reserved context names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should match
the method signatures of methods you wish to include in this
context. Note that when method signatures are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

maxComplexity Match a method to this pattern if its cyclomatic complexity is not
greater than maxComplexity. In other words - all methods with
complexity <= maxComplexity will be filtered out.

No.

maxStatements Match a method to this pattern if its number of statements is not
greater than maxStatements. In other words - all methods with
statements <= maxStaments will be filtered out.

No.

Note
The sub-element has been deprecated and has no effect.<useclass>

The <fileset> tag has a "dir" attribute and uses standard Ant directory scanner to find sources for
exclusion. It means that at the time when <clover-setup> is called the directory must be present and files
to be excluded/included too.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 115

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

maxAggregatedComplexity Since 3.1.10. Match a method to this pattern if its aggregated
cyclomatic complexity is not greater than
maxAggregatedComplexity. In other words - all methods with
aggregated complexity <= maxAggregatedComplexity will be
filtered out. Aggregated complexity metric is a sum of the method
complexity and complexity of all anonymous inline classes declared
in the method.

No.

maxAggregatedStatements Since 3.1.10. Match a method to this pattern if its number of
aggregated statements is not greater than
maxAggregatedStatements. In other words - all methods with
aggregated statements <= maxAggregatedStaments will be filtered
out. Aggregated statements metric is a sum of the method
statements and statements of all anonymous inline classes
declared in the method.

No.

What is the difference between maxComplexity and maxAggregatedComplexity or maxStatements and
maxAggregatedStatements?

Aggregated metrics calculate method statements/complexity including the code of all anonymous inline classes
declared inside the method. Thanks to this, it is possible to distinguish between a trivial single-statement method
like:

int getNumber() {
 return number;
}

and a single-statement method which actually returns more complex data, like:

ActionListener getListener() {
 return new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("statement #1");
 System.out.println("statement #2");
 System.out.println("statement #3");
 }
 };
}

If you would use a method context filter with attribute, like the following:maxStatements

<methodContext name="trivial" regexp=".*" maxStatements="1">

then both and methods would be filtered-out, because each of them contains only onegetNumber() getListener()
statement: "return <xxx>".

If you would use new , for instance:maxAggregatedStatements

<methodContext name="trivial" regexp=".*" maxAggregatedStatements="1">

then the would be filtered-out and the method would be filtered out (because itgetNumber() getListener() not

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 116

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

contains 4 statements in total - 1 "return" statement from the method itself and 3 "System.out.println()"
statements from anonymous class).

Regular expression tip:

 If you would like to filter-out all methods, except those having a specific name, you could write a
negative-look-ahead regular expression. For example:

<methodContext name="trivial" regexp="^(?!.*(getRunnable|getListener)).*$"
maxStatements="1"/>

will filter-out all methods having not more than one statement, except those which are named or getRunnable ge
tListener.

<statementContext>

Specifies a statement Context definition. See for more information.Using Coverage Contexts

Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the reserved context
names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should match statements you
wish to include in this context. Note that when statements are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

<profiles>

Since 3.1.11. Optional element. Defines a list of Clover profiles, which can be selected at runtime by providing a
 system property. Thanks to this you can change some of Clover's behaviour withoutclover.profile=<name>

code recompilation.

<profiles>
 <profile name="default" coverageRecorder="FIXED|GROWABLE|SHARED">
 <distributedCoverage/> <!-- optional -->
 </profile>
 <profile .../>
 <!-- more profiles -->
</profile>

<profile>

Since 3.1.11. Contains a definition of a single runtime profile.

This element does not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 117

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Parameters

Attribute Description Required

name The name for this profile; name must be unique among profiles. There must
be one profile named "default".

No.
Defaults to
"default".

coverageRecorder Type of coverage recorder which will be used for gathering coverage data
at runtime. Possible values: FIXED, GROWABLE, SHARED (case
insensitive).

 Warning: we strongly recommend using the default setting. Do not
change until you deeply understand .how it works

No.
Defaults to
"FIXED".

Nested elements

<distributedCoverage/>

Note: a definition in element has priority over the <profile>/<distributedCoverage> <clover-setup|clover-in
 element.str>/<distributedCoverage>

Selecting clover.profile at runtime

Clover profile is being selected at runtime using the following algorithm:

Are there any profiles defined in compiled code?
yes -

1. read the system property. is it defined?clover.profile
yes - use the value as profile name
no - use the "default" profile name

2. is the profile name found on list of defined profiles?
yes - use settings from this profile
no - (default coverage recorder etc...)use system settings

no - (default coverage recorder etc...)use system settings

So it fall-backs to default system settings in case of missing profile.

<testsources>

<testsources> is an which should only be used if Clover's is not adequate.Ant fileset default test detection
Clover's default test detection algorithm is used to distinguish test cases if this element is omitted.

Nested elements of <testsources>

<testclass>

<testclass> can be used to include only specific test classes.
Parameters

Attribute Description Required

name A regex on which to match the test class's name. No.

super A regex on which to match the test class's superclass. No.

annotation A regex on which to match the test class's annotation. No.

To have test sources reported in a separate tree to your application code, use the eleme<testsources/>
nt in the task.<clover-report/>

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/fileset.html
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Testsources

Documentation for Clover 4.0 118

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

package A regex on which to match the test class's package. No.

tag A regex on which to match the test class's javadoc tags. No.

 For more information about regular expressions, please visit http://java.sun.com/j2se/1.4.2/docs/api/java/util/r
.egex/Pattern.html#sum

<and>

<and> can be used to specify multiple instances of <testclass>, all of which must be matched for a class to be
detected as a test, e.g.:

<testsources dir="tests">
<and>
 <testclass annotation="Specification"/>
 <testclass annotation="Test"/>
</and>
<testsources>

In this example, a class will only be recognised as a test if it has " " " " annotations.Specification and Test
<or>

<or> can be used to specify multiple instances of <testclass>, any of which must be matched for a class to be
detected as a test, e.g.:

<testsources dir="tests">
<or>
 <testclass name=".*Spec"/>
 <testclass name=".*Test"/>
</or>
<testsources>

In this example, a class will be recognised as a test if its name matches " ", its name matches ".*Spec or .*Tes
".t

Nested elements of <testclass>

<testmethod>

<testmethod> can be used to perform more fine grained detection of test methods.

 Clover matches methods only; it does not match constructors ().CLOV-1339
Parameters

Attribute Description Required

name A regex on which to match the test method's name. No.

annotation A regex on which to match the test method's annotation. No.

tag A regex on which to match the test method's javadoc tags. No.

returntype A regex on which to match the return type of the method, e.g.:

" " will match any return type..*
" " will match methods with no return type.void

No.

Note that you can include multiple instances of <testmethod>, in which case they will be treated as 'or' clauses,
e.g.:

http://creativecommons.org/licenses/by/2.5/au/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#sum
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#sum
https://jira.atlassian.com/browse/CLOV-1339

Documentation for Clover 4.0 119

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<testsources dir="tests">
 <testclass>
 <testmethod annotation="Specification"/>
 <testmethod name="^should.*"/>
 <testmethod name="^must.*"/>
 </testclass>
<testsources>

In this example, a method will be recognised as a test if its annotation is " ", its nameSpecification or
matches " ", its name matches " ".^should* or ^must*

Examples

<clover-setup/>

This example is the minimal setup to use Clover. In this case, the is located in theClover coverage database
.clover relative directory.

<clover-setup enabled="${enable}">
 <files>
 <exclude name="**/atlassian/clover/**/*.java"/>
 </files>
</clover-setup>

This example shows the use of a property, "enable", to control whether Clover instrumentation is enabled.
Additionally, the instrumentation will exclude all Java source files in trees belonging to the com.atlassian.clover.*
packages (please note, that even if the files belong in the src/main or src/test directory, you cannot specify src,
main or test as these are directories and do not belong to the package structure. When using files, you need to
filter by files or the packages as in the example above). Note that the fileset can also be referenced using a refid
attribute.

<clover-setup enabled="${coverage.enable}">
 <fileset dir="src/main">
 <contains text="Joe Bloggs"/>
 </fileset>
</clover-setup>

This example instruments all source files in the src/main directory tree that contain the string "Joe Bloggs". Ant's
filesets supports a number of these selectors. Please refer to the Ant manual for information on these selectors.

Interval Flushing

By default Clover will write coverage data to disk when the hosting JVM exits, via a shutdown hook. This is not
always practical, particularly when the application you are testing runs in an Application Server. In this situation,
you can configure Clover to use "interval" flushing, where coverage data is written out periodically during
execution:

<clover-setup flushpolicy="interval"
 flushinterval="5000"/>

The "flushinterval" defines in milliseconds the minimum interval between coverage data writes.

Specifying a delegate compiler

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 120

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover provides the optional "clovercompiler" attribute to allow specification of the java compiler to delegate to
once instrumentation is completed. The attribute accepts the same values "compiler" attribute of the Ant Javac

.Task

<clover-setup clovercompiler="jikes"/>

This example will pass compilation to the "jikes" compiler once instrumentation is complete.

Specifying the location of the Clover Coverage database

By default, Clover writes its to the file relative to the project's baseinternal database .clover/clover.db
directory. To override this location, use the attribute, e.g.:initstring

<clover-setup initstring="clover-db/coverage.db" />

This example will use as the location for the . Note that theclover-db/coverage.db Clover database
directory should exist before running this task.clover-db

Specifying a custom test matcher

By default, Clover attempts to detect your test classes and methods. Clover's default behaviour may be
overridden via the following:

<clover-setup>
 <testsources dir="src">
 <include name="**/*Test.java"/>
 <testclass name=".*Test">
 <testmethod name=".*Bag.*"/> <!-- only the Bag related tests -->
 </testclass>
 </testsources>
</clover-setup>

This example tells Clover to recognise all of the following as tests: classes in the directory "src"; classes in files
whose names end with "Test"; methods whose names contain with "Bag".

Troubleshooting

Clover does not support parallel compilation

You cannot use <parallel/> task for code compilation, for instance:

<target name="init">
 <clover-setup/>
</target>

<target name="compile" depends="init">
 <parallel>
 <javac srcdir="module1" .../>
 <javac srcdir="module2" .../>
 </parallel>
</target>

will produce error message like:

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTasks/javac.html
http://ant.apache.org/manual/CoreTasks/javac.html

Documentation for Clover 4.0 121

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

[clover] Error finalising instrumentation:
 [clover] java.io.IOException: Failed to move tmp registry file
/myproject/.clover/clover3_1_6.db.tmp to final registry file

Clover test detection

Detection of test methods

Clover is able to detect test methods for following test frameworks and code patterns.

JavaDoc tags

This approach can be used for Java 1.4, which does not support annotations. In such case, test methods can be
marked using JavaDoc tags:

TestNG style

/** @testng.test */

class MyTest {

/** @testng.test */

void myTestMethod() { }

}

JUnit style

/** @test */

void myTestMethod() { }

JUnit3

Methods with a following signature:

public void test***()

JUnit4

Methods annotated with one of the following:

@junit.org.Test(expected={Foo.class})

@junit.org.Test(expected=Foo.class)

@Test(expected=Foo.class)

JUnit4+Spring

Methods annotated with:

@Test
@org.springframework.test.annotation.ExpectedException({Bar.class})

or

@Test
@ExpectedException(value={Bar.class})

TestNG

Methods annotated with one of the following:

@org.testng.annotations.ExpectedExceptions(Foo.class)

@ExpectedExceptions(org.bar.Foo.class)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 122

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

@org.testng.annotations.Test(expectedExceptions={Foo.class})

@Test(expectedExceptions={Foo.class})

@org.testng.annotations.Test(expectedExceptions=Foo.class)

@Test(expectedExceptions=Foo.class)

Instinct

Methods annotated with one of the following:

@com.googlecode.instinct.marker.annotate.Specification(expectedException=Foo.class)

@Specification(expectedException=Foo.class)

Usage context

These patterns are being used by Clover for per-test coverage, test optimization and reporting.

methodContext

<methodContext>

Specifies a method Context definition. See for more information.Using Coverage Contexts
Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the
reserved context names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should match
the method signatures of methods you wish to include in this
context. Note that when method signatures are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

maxComplexity Match a method to this pattern if its cyclomatic complexity is not
greater than maxComplexity. In other words - all methods with
complexity <= maxComplexity will be filtered out.

No.

maxStatements Match a method to this pattern if its number of statements is not
greater than maxStatements. In other words - all methods with
statements <= maxStaments will be filtered out.

No.

maxAggregatedComplexity Since 3.1.10. Match a method to this pattern if its aggregated
cyclomatic complexity is not greater than
maxAggregatedComplexity. In other words - all methods with
aggregated complexity <= maxAggregatedComplexity will be
filtered out. Aggregated complexity metric is a sum of the method
complexity and complexity of all anonymous inline classes declared
in the method.

No.

maxAggregatedStatements Since 3.1.10. Match a method to this pattern if its number of
aggregated statements is not greater than
maxAggregatedStatements. In other words - all methods with
aggregated statements <= maxAggregatedStaments will be filtered
out. Aggregated statements metric is a sum of the method
statements and statements of all anonymous inline classes
declared in the method.

No.

What is the difference between maxComplexity and maxAggregatedComplexity or maxStatements and

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 123

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

maxAggregatedStatements?

Aggregated metrics calculate method statements/complexity including the code of all anonymous inline classes
declared inside the method. Thanks to this, it is possible to distinguish between a trivial single-statement method
like:

int getNumber() {
 return number;
}

and a single-statement method which actually returns more complex data, like:

ActionListener getListener() {
 return new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("statement #1");
 System.out.println("statement #2");
 System.out.println("statement #3");
 }
 };
}

If you would use a method context filter with attribute, like the following:maxStatements

<methodContext name="trivial" regexp=".*" maxStatements="1">

then both and methods would be filtered-out, because each of them contains only onegetNumber() getListener()
statement: "return <xxx>".

If you would use new , for instance:maxAggregatedStatements

<methodContext name="trivial" regexp=".*" maxAggregatedStatements="1">

then the would be filtered-out and the method would be filtered out (because itgetNumber() getListener() not
contains 4 statements in total - 1 "return" statement from the method itself and 3 "System.out.println()"
statements from anonymous class).

Regular expression tip:

 If you would like to filter-out all methods, except those having a specific name, you could write a
negative-look-ahead regular expression. For example:

<methodContext name="trivial" regexp="^(?!.*(getRunnable|getListener)).*$"
maxStatements="1"/>

will filter-out all methods having not more than one statement, except those which are named or getRunnable ge
tListener.

profiles

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 124

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<profiles>

Since 3.1.11. Optional element. Defines a list of Clover profiles, which can be selected at runtime by providing a
 system property. Thanks to this you can change some of Clover's behaviour withoutclover.profile=<name>

code recompilation.

<profiles>
 <profile name="default" coverageRecorder="FIXED|GROWABLE|SHARED">
 <distributedCoverage/> <!-- optional -->
 </profile>
 <profile .../>
 <!-- more profiles -->
</profile>

<profile>

Since 3.1.11. Contains a definition of a single runtime profile.
Parameters

Attribute Description Required

name The name for this profile; name must be unique among profiles. There must
be one profile named "default".

No.
Defaults to
"default".

coverageRecorder Type of coverage recorder which will be used for gathering coverage data
at runtime. Possible values: FIXED, GROWABLE, SHARED (case
insensitive).

 Warning: we strongly recommend using the default setting. Do not
change until you deeply understand .how it works

No.
Defaults to
"FIXED".

Nested elements

<distributedCoverage/>

Note: a definition in element has priority over the <profile>/<distributedCoverage> <clover-setup|clover-in
 element.str>/<distributedCoverage>

Selecting clover.profile at runtime

Clover profile is being selected at runtime using the following algorithm:

Are there any profiles defined in compiled code?
yes -

1. read the system property. is it defined?clover.profile
yes - use the value as profile name
no - use the "default" profile name

2. is the profile name found on list of defined profiles?
yes - use settings from this profile
no - (default coverage recorder etc...)use system settings

no - (default coverage recorder etc...)use system settings

So it fall-backs to default system settings in case of missing profile.

statementContext

<statementContext>

Specifies a statement Context definition. See for more information.Using Coverage Contexts

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 125

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Parameters

Attribute Description Required

name The name for this context. Must be unique, and not be one of the reserved context
names (see).Using Coverage Contexts

Yes.

regexp A Perl 5 Regexp that defines the context. This regexp should match statements you
wish to include in this context. Note that when statements are tested against this
regexp, whitespace is normalised and comments are ignored.

Yes.

clover-snapshot

Description

The task generates a snapshot file used to assist Clover in optimizing the tests run in<clover-snapshot>
subsequent. This task should be run at the end of a build (i.e. after all unit tests have run).

Parameters

Attribute Description Required

file Specifies an alternative location for the snapshot file. No; defaults
to the
initstring +
".snapshot".

span Clover interval (e.g. "2m" or "3h"); specifies, for the initial build cycle, the span for
coverage used in generating the snapshot file used for test optimization; normally
only specified when multiple interleaved compiles & test runs happen during a build
cycle

No; defaults
to "0s" (zero
seconds).

Examples

<clover-snapshot/>

Generates a snapshot file used to assist Clover.

<clover-snapshot file="C:\My Documents\clover.snapshot"/>

Specifies an alternative location of "C:\My Documents\clover.snapshot" for the snapshot file.

<clover-snapshot span="3m"/>

Defines a custom span of "3m" (three minutes) used in generating the snapshot file used for Test Optimization.

7. Ant Type Reference

Clover Ant Types

< >clover-format Creates standalone format elements which can then be used across a number of
reports.

This element does not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 126

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

< >clover-columns Defines a set of custom columns to be used by tasks which take a <columns/>
element, such as historical charts, JSON report, and HTML current report.

<clover-optimized-tests
>et

Test optimization for the <junit> task.

clover-columns

Description

Defines a set of custom columns to be used by tasks which take a <columns/> element, such as historical
charts, JSON report, and HTML current report.

Example: Creating a custom chart with <clover-columns>

<clover-columns id="my.columns">
 <totalChildren/>
 <avgMethodComplexity/>
 <totalPercentageCovered format="bar"/>
</clover-columns>

Example: Using the custom chart elsewhere

<clover-report>
 <current>
 <columns refid="my.columns"/>
 </current>
</clover-report>

clover-format

Description

The type creates standalone format elements which can then be <clover-format> used across a number of
. reports

These standalone types support the same attributes and elements as the internal elements of the <format> <c
 task. To name the format, use the standard Ant "id" attribute.>lover-report

Parameters

Examples

See for some usage examples.Sharing Report Formats

clover-optimized-testset

Description

The type is designed to be used within JUnit and Ant's task<clover-optimized-testset> <batchtest/>
(which is used to feed JUnit a list of .java files that map to the test classes to be run). This type accepts other
resource collection elements (e.g.), filters and reorders their resources for Test Optimization. To<fileset/>
use this type, you must first include .cloverlib.xml

Parameters

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 127

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Attribute Description Required

snapshotfile Snapshot file path if not in the default location. No; defaults
to (initstring
+
".snapshot").

enabled Boolean value that specifies whether the selector should optimize. If set to
false no optimization occurs, if true, then optimization occurs as per the other
attributes.

No; defaults
to " ".true

minimize Boolean value that (when true) tells Clover to restrict the set of tests, running
only those that caused coverage in a changed file. When set to false, this will
cause Clover to run all tests. this attribute can be used to force a full test run if,
for instance, some important configuration files change and the build system
decides that a full test run should be executed

No; defaults
to " ".true

fullrunevery Specifies how many optimized builds can run before a full run should be
performed (to re-calibrate the optimization).

No; defaults
to " ".10

ordering Specifies how tests should be ordered during an optimized build. Accepts
values "failfast", "original" or "random". The "failfast" setting runs the previously
failed test first then shortest to longest test. The "original" setting orders the
tests as they were found by the underlying fileset. The "random" setting applies
a random ordering to the tests.

No; defaults
to "failfa

".st

Elements:
<*/> - any : anything that implements Ant resource collection org.apache.tools.ant.types.ResourceCol

.lection

Example

<junit ...>
 <batchtest todir="${outdir}/${testresultsprefix}" fork="true">
 <clover-optimized-testset fullrunevery="${max.optimized.builds}">
 <fileset dir="${test.location}" includes="**/*Test.java"/>
 </clover-optimized-testset>
 <formatter type="xml"/>
 <formatter type="plain"/>
 </batchtest>
</junit>

8. Controlling Clover at Runtime
Clover Performance Tuning
Coverage Recorders
Managing the Coverage Database
Using a Flush Policy
Using Source Directives
Working with Distributed Applications
Working with Restricted Security Environments

Clover Performance Tuning

This page contains instructions on how to tune Clover's performance when running your builds and measuring
code coverage.

On this page:

Tips for improving performance
Configure 'Unique per-test coverage' tracking in HTML report
Set Instrumentation to "method level" (when using Test Optimization)

http://creativecommons.org/licenses/by/2.5/au/
http://ant.apache.org/manual/CoreTypes/resources.html

Documentation for Clover 4.0 128

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Select per-test coverage recording strategy
Related Links

Appendix - sample performance data
Comparison of statement and method instrumentation level
Comparison of different per-test coverage recording strategies

Tips for improving performance

Configure 'Unique per-test coverage' tracking in HTML report

Unique coverage relates to a line of code that was hit by only one test. Unique coverage tracking can be
switched off to reduce CPU & memory usage when running Clover. You can configure unique coverage
reporting in the following Clover components:

Clover Command-Line Interface HTML Reporter'
The HTML report in Clover-for-Ant
The Current report in Clover-for-Ant

Set Instrumentation to "method level" (when using Test Optimization)

If you use Clover in your build purely for Test Optimization purposes and not for coverage reporting, you can
reduce the granularity of Clover instrumentation from statement to method level. The 'instrumentationLevel
' attribute set to method level allows for speedier instrumentation, compilation & test execution.

This speeds up the build at the loss of some accuracy. This is the setting to use if you want to improve Clover's
performance. When this attribute is set to ' ' (the default), the builds will take longer but thestatement
optimization intelligence will also be stronger.

You can configure instrumentation level in the following Clover-for-Ant tasks:

clover-setup
clover-instr (Clover instrumentation)

See the for more information.Ant Task Reference

Select per-test coverage recording strategy

During your test runs, Clover tries to record total code coverage and per-test code coverage as efficiently as
possible but defaults to settings best for applications which are not highly CPU intensive. If your application is
highly CPU intensive and code coverage recording is causing slow running tests, the following options may
assist:

Supply this option to the JVM running your tests:

-Dclover.pertest.coverage=diff

This changes the way per-test coverage is recorded at runtime to work faster for CPU intensive
applications.

Supply this option to the JVM running your tests:

-Dclover.pertest.coverage=off

This tells Clover to not record any per-test coverage data at runtime. With this you gain a faster running
time for CPU intensive applications, although you lose per-test coverage information.

If you fork your unit tests, this must be passed to the forked JVM as a command line argument in Ant,
Maven or the Eclipse or IDEA Intellij unit test launchers through their respective dialogs; if you don't fork
your tests, this must be supplied to Ant through the ANT_OPTS environment variable or to Maven
through the MAVEN_OPTS variable.

Related Links

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/HtmlReporter
http://confluence.atlassian.com/display/CLOVER/clover-html-report
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Current
http://confluence.atlassian.com/display/CLOVER/6.+Ant+Task+Reference

Documentation for Clover 4.0 129

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Performance Tuning in Clover for Eclipse

Appendix - sample performance data

This appendix contains few sample performance results based on a synthetic and a real code. Results in your
project may be different.

Comparison of statement and method instrumentation level

Sample code

A following open source libraries were tested using statement- and method-level instrumentation.

Apache Commons IO version 2.4 (I/O operations)
Apache Commons Math version 3.2 (CPU-intensive calculations)
Guava version 14.0.1 (data collections)

Standard test of unit tests was executed and a total time of test execution was measured.

Results

(*) only 200 test classes were executed for Commons Math

Conclusion

Performance penalty for a method and statement instrumentation level may vary significantly, especially for
CPU-intensive applications.

Comparison of different per-test coverage recording strategies

Strategy System properties Comment

disabled -Dclover.pertest.coverage=off Use this if to disable per-test coverage
recording.

http://creativecommons.org/licenses/by/2.5/au/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-math/index.html
http://code.google.com/p/guava-libraries/

Documentation for Clover 4.0 130

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

diffing -Dclover.pertest.coverage=diff Theoretically it is good for highly
CPU-intensive code (lot of hit counts to
be recorded) and a relatively small code
base (smaller hit count arrays to be
compared).

single
threaded

(nothing) Default strategy. Designed for
single-threaded applications. Per-test
coverage might be inaccurate if used
with multi-threaded application. Very
good performance.

synchronized -Dclover.pertest.coverage.threading=synchronized Safe for multi-threaded applications.
Performance penalty as recording of
every hit count is encapsulated in
synchronized block.

volatile -Dclover.pertest.coverage.threading=volatile Safe for multi-threaded applications, but
requires at least JRE 1.5.

Sample code

The following class:

import junit.framework.TestCase;
public class PerformanceTest extends TestCase {
 static int hitsPerTest;
 static int numberOfTests;

 public void testPerformance() {
 for (int i = 0; i < hitsPerTest; i++); // empty loop, one R.inc(...) call
per loop
 }

 public static void main(String[] args) {
 numberOfTests = Integer.valueOf(args[0]);
 hitsPerTest = Integer.valueOf(args[1]);

 PerformanceTest pt = new PerformanceTest();
 for (int i = 0; i < numberOfTests; i++) {
 pt.testPerformance();
 }
 }
}

was instrumented using Fixed Coverage Recorder and executed with different per-test recording strategies. In
order to have roughly 10'000'000 hits recorded by Clover, application was executed with following arguments:

PerformanceTest 10 1000000
PerformanceTest 20 500000
PerformanceTest 50 200000
PerformanceTest 100 100000
PerformanceTest 200 500000
PerformanceTest 500 200000
PerformanceTest 1000 10000
PerformanceTest 10000 1000

Results

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 131

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Test environment: JDK 1.5, Windows 7; Core i7 2670QM 2.2 GHz; 8GB RAM; HDD 750GB 7200RPM.

Conclusion

For a large number of tests, performance is mainly affected by a fact that the coverage recording file is being
created on a hard disk. If you have more than 1000 tests there is practically no difference which strategy is used.

For CPU intensive applications the strategy is slightly faster than the or ."diffing" "single-threaded" "volatile"

Coverage Recorders

This page explains few details how Clover code instrumentation works and how the coverage data is being
collected at runtime.

This article might be helpful for you in case you have significant performance problems or your application runs
in a restricted environment.

Instrumenting code

Every time Clover instruments the code (via <clover-instr/> or <clover-setup/> - both Java and Groovy) it records
information about the code structure (packages, files, classes, method, statements, branches, test methods etc)
into the Clover database. Because of fact that the same database can be used multiple times (for instance in
case of incremental compilation; or when project has several modules compiled separately), it maintains history
of changes in blocks named 'instrumentation session'.

Every instrumented class is enhanced by adding code which requests a Clover's coverage recorder instance.
Such coverage recorder getter is called with some arguments, which allows to determine which Clover database
file and which instrumentation session in this file contains information about the class structure (like indexes of
statements, methods, branches etc).

As project contains many classes, Clover has an optimization so that some of these classes will share the same
coverage recorder instance - exact strategy depends on selected recorder type - see below.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 132

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Diagram: code instrumentation process

Information about code structured is stored in Clover database. Every instrumented class contains information
about database (initstring) and the instrumentation session time stamp. Thanks to this it's possible to map
compiled class file to a corresponding source file (also in correct version - see C.java).

Executing code

Fixed Coverage Recorder

It's using an in-memory fixed-size array for recording hit counts for methods, statements and branches.long[]
Calculation of the long[] array size requires access to the Clover Database (clover.db) at runtime, however. All
classes which were compiled in the same instrumentation session (i.e. within the same <clover-instr> or javac or
groovyc call) will share the same instance of the coverage recorder.

This is a default coverage recorder and we strongly recommend using it.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 133

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Growable Coverage Recorder

It's using a dynamically resizeable two-dimensional array for recording hit counts for methods.long[][1000000]
Thanks to this it does not require access to the Clover Database at runtime and this is its main advantage. It's
performance is slightly lower than the Fixed Coverage Recorder due to memory allocation and two-level
indexing. All classes which were compiled in the same instrumentation session (i.e. within the same
<clover-instr> or javac or groovyc call) will share the same instance of the coverage recorder.

This recorder simplifies a deployment and test process as clover.db is not required at runtime. It's useful
for cases like in-container tests, tests executed on application server, builds on remote agents or for
Android applications.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 134

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Shared Coverage Recorder

It's a modification of the Growable Coverage Recorder designed specially for Grails-based projects. It shares the
same coverage recorder instance for every instrumented class which was compiled with the same database
initstring and configuration settings (like flush policy). It means that it ignores instrumentation session
timestamps.

Grails build system works in such way that it compiles every domain class and service class separately. As a
consequence, Clover "sees" this as a separate instrumentation session. It means that in case of the fixed or
growable coverage recorder it creates a separate instance of the recorder for every domain or service class.

It might become a performance problem if you have many such classes you execute test methods, becauseand
end of test method will force creation of the per-test coverage file () from coverage recorder every clover.db*.s all
instances. For example:

500 domain classes * 1000 unit tests = 500 coverage recorders * 1000 snapshots = 500'000 files on disk

Use this coverage recorder only in case when:

you have a large Grails project with hundreds of Domain Classes or Services and
you instrument and run test classes and
you have a significant performance problem related with coverage data writing and/or generating
Clover reports

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 135

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Note that the performance problem does not occur during normal application run or when test code is not
instrumented. For example:

500 domain classes (normal app execution) = 500 coverage recorders * 1-2 snapshots (depends on flush
policy) = 500-1000 files on disk

If you decide to use a Shared Coverage Recorder, you must keep in mind that:

you have multiple modules which have the same initstring value, but they actually point to cannot
different files (it's a typical case if you have a multi-module Maven project and you use the same relative
initstring for each module)

TIP: use an absolute path for initstrings or share a same database among modules
you deploy outdated class files, for which information in the Clover database is not longer valid cannot
(as instrumentation timestamp is ignored);

TIP: perform a full project build, deleting all old classes as well as Clover database and coverage
recording files (see example for Grails)"Using shared coverage recorder"

Managing the Coverage Database

Database structure and lifecycle

The Clover database consists of several files that are constructed at various stages of the instrumentation and
coverage recording process. The following files are created if Clover is initialised with an ofinitstring
"clover.db"

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 136

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Registry file

Filename: clover.db

Description: The Registry file contains information about all of the classes that have been instrumented by
Clover. This file does not contain any actual coverage recording data.

Lifecycle: The Registry file is during the instrumentation process. If an existing Registry file is found, thewritten
existing file is updated. If no Registry file is found, a new Registry file is created. The Registry file is byread
Clover-instrumented code when it is executed, and also during report generation or coverage browsing (such as
via an IDE plugin or the Swing Viewer).

ContextDef file

Filename: clover.db.ctx

Description: The ContextDef file contains user-defined context definitions. Note that while this file is in plain
text, it is managed by Clover and should not be edited directly by the user.

Lifecycle: The ContextDef file is prior to Clover instrumentation. The ContextDef file is duringwritten read
instrumentation, report generation and coverage browsing.

CoverageRecording Files

Filename: or (where HHHHHHHclover.dbHHHHHHH_TTTTTTTTTT clover.dbHHHHHHH_TTTTTTTTTT.1
and TTTTTTTTTT are both hex strings)

Description: CoverageRecording files contain actual coverage data. When running instrumented code, Clover
creates one or more Coverage Recorders. Each Coverage Recorder will write one CoverageRecording file. The
number of Coverage Recorders created at runtime depends the nature of the application you are Clovering. In
general a new Coverage Recorder will be created for each new ClassLoader instance that loads a Clovered
class file. The first hex number in the filename (HHHHHHH) is a unique number based on the recording context.
The second hex number (TTTTTTTTTT) is the timestamp (ms since epoch) of the creation of the Clover
Recorder. CoverageRecording files are named this way to try to minimise the chance of a name clash. While it is
theoretically possible that a name clash could occur, in practice the chances are very small.

Lifecycle: CoverageRecording files are during the execution of Clover-instrumented code.written
CoverageRecording files are during report generation or coverage browsing.read

Managing the Clover database

Because the Clover database can consist of many recording files, you might find it easier to create the database
in its own directory. This directory can be created at the start of a Clover build, and deleted once coverage
reports have been generated from the database.

Although Clover will update an existing database over successive builds, it is in general recommended that the
database be deleted after it is used to generate reports, so that a fresh database is created on the next build. Do

 The Ant task is provided to allowing this improves the runtime performance of Clover. < >clover-clean
easy deletion of a Clover database. Note that the IDE Plugins all have a feature to automatically manage the
Clover database for you.

Using a Flush Policy

How Clover writes coverage data to disk at runtime can be configured by changing Clover's . Cloverflush policy
provides three policies: , and . The default mode is . The flush policydirected interval threaded directed
is set at instrumentation time, either via the Ant task, or via the IDE plugin configuration< >clover-setup
screen.

Which flush policy you choose depends on the runtime environment in which the instrumented code is
executing. In the most common unit testing scenarios, the default flush policy will suffice. In situations where

Note
Clover has a failsafe mechanism for writing recording files to disk when using interval-based flush
policies. The mechanism alternates between writing to a primary recording file and a secondary
recording file. This prevents data loss in the event of abnormal JVM termination. The secondary
recording file has the same name as a normal recording file but with .1 appended to its name.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 137

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

instrumented code is executing in a hosted environment (e.g. a J2EE container) and shutting down the JVM at
the end of testing is not desirable, you will want to use one of the interval-based flush policies.

Policy Description

directed Coverage recordings are flushed only when the hosting JVM is shut down, or where thedefault.
user has directed a flush using the . Directed flushing has the///CLOVER:FLUSH inline directive
lowest runtime performance overhead of all flush policies (depending on the use of the flush
inline directive). Note that no coverage recordings will be written if the hosting JVM is not
shut down, or if the hosting JVM terminates abnormally.

interval The policy flushes as per the directed policy, and also at a rate determinedinterval maximum
by the interval set at instrumentation time (see the attribute on flushinterval <clover-setu

). The mode is a 'passive' mode in that flushing potentially occurs only while>p interval
instrumented code is still being executed. There exists the possibility that coverage data
recorded just prior to the end of execution of instrumented code may not be flushed,
because the flush interval has not elapsed between the last flush and the end of execution

 Any coverage not flushed in this manner will be flushed if/when theof instrumented code.
hosting JVM shuts down. The policy should be used in environments where shutdowninterval
of the hosting JVM is not practical . If you don'tand thread creation by Clover is not desired
mind Clover creating a thread, use the policy. Runtime performance overhead isthreaded
determined by the flush interval.

threaded The policy flushes as per the directed policy, and also at a rate determined by thethreaded
interval set at instrumentation time (see the attribute on).flushinterval < >clover-setup
The mode starts a separate thread to perform flushes. The policy shouldthreaded threaded
be used in environments where shutdown of the hosting JVM is not practical. Runtime
performance overhead is determined by the flush interval.

Using Source Directives

Clover supports a number of inline source directives that you can use in your source to control instrumentation.
Directives can be on a line by themselves or part of any valid single or multi-line Java comment.

Switching Clover on and off

///CLOVER:ON
///CLOVER:OFF

This directive will switch Clover instrumentation on/off. This might be useful if you don't want Clover to
instrument a section of code for some reason. Note that the scope of this directive is the current file only.

Force Clover to flush

///CLOVER:FLUSH

Clover will insert code to flush coverage data to disk. The flush code will be inserted as soon as possible after
the directive. See .Using a Flush Policy

Working with Distributed Applications

Introduction

In some cases the application you wish to test has many components running on separate nodes in a network,
or even on disconnected machines. You can use Clover to test such applications, although some additional

Clover source directives currently do not support Groovy.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 138

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

configuration is required. This page describes how to configure Clover in order to get a per-test code coverage
for distributed business logic.

 Please note that having an application deployed on multiple machines does not necessarily mean that the
application logic is truly distributed. For instance, an application might run on multiple machines for the sake of
load balancing, but do not have communication between nodes. We recommend to read the Using Clover in

 tutorial and especially to have a look at the "Decision matrix" which can helpvarious environment configurations
you to decide which approach would best fit your needs.

 When deploying your application in container environments, you should also check to ensure that Clover has
.sufficient permissions to function

 When deploying, please ensure you deploy your clovered version of the war/ear file. If you use
"clover2:instrument" goal, then the clovered version of the war/ear will have a "-clover" in the name and can
usually be found in the directory. For example, the filename could resemble this: target/clover money-test
-tutorial-1.0-SNAPSHOT-clover.jar

On this page:

Introduction
Overview
Collecting Overall Coverage from Distributed Builds

Step 1: Understanding the Clover 'initstring'
Step 2: Choosing a Location for the Clover Registry
Step 3: Set Your Classpath Correctly

Collecting Per-Test Coverage from Distributed Builds
Enabling or Disabling Distributed Coverage at Runtime

Troubleshooting
Server does not wait for clients, despite having numClients != 0 in build configuration
Execution of tests hangs when numClients != 0

Overview

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 139

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

In Clover Distributed Coverage we have two main machine roles:

Clover Server - is a JVM in which Clover sends "test start" and "test end" events in order to inform Clover
Clients about test boundaries; Clover opens a port on which it waits for Clover Clients to connect

Clover Client - is a JVM in which Clover will connect to Clover Server

 Please note that Clover's Server/Client designation is actually unrelated with your application structure.

 Both Clover Server and Clover Client write coverage files to disk.

Clover Server is the place where you will typically execute unit tests (or integration tests). These tests will call
application logic on Clover Client #N machines.

If unit tests (or integration tests) are executed by a build script, then the actually performs a role ofBuild Server
the Clover Server.

Report Server is the place where Clover reports are generated - it can be the same physical machine as Build
Server, of course.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 140

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The diagram above shows a simplified configuration used in the . There are only two JVMsWebApp example
used:

1st one is a Maven build, which instantiates a container using Cargo Maven Plugin, deploys compiled
application and clover.jar, executes unit tests with "-Dclover.server=true" option (Clover records coverage
of test classes) and finally creates a report
2nd one is a Tomcat container, where instrumented application is running, Clover listens to "test
start/end" evens to record per-test coverage (in addition to the global coverage)

Collecting Overall Coverage from Distributed Builds

The first step in setting up coverage from distributed builds is to configure Clover for overall coverage reporting.

Step 1: Understanding the Clover 'initstring'

At build time, Clover constructs a registry of your source code, and writes it to a file at the location specified in
the Clover initialisation string (). When Clover-instrumented code is executed (e.g. by running ainitstring
suite of unit tests), Clover looks in the same location for this registry file to initialise itself. Clover then records
coverage data and writes coverage recording files next to the registry file during execution. See Clover Database

 for more information.Structure

Step 2: Choosing a Location for the Clover Registry

If you are deploying and running your Clover-instrumented code on different machines, you must provide a way
for Clover to find the registry file, and provide a place for Clover to write coverage recording files; otherwise no
coverage will be recorded.

http://creativecommons.org/licenses/by/2.5/au/
https://studio.plugins.atlassian.com/svn/CLMVN/trunk/src/it/webapp

Documentation for Clover 4.0 141

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

Clover provides three different ways to achieve this:

Specify an initstring that is a globally accessible file path
The compile-time should be an absolute path to the filesystem location, and beinitstring same
accessible and writable from the build machine and all execution machines. This could be a path on
shared drive or filesystem.
OR:
Specify an initstring that is a relative path, resolved at runtime
The compile-time represents a relative path (relative to the CWD of each executioninitstring
context). To do this you need to specify on the task.relative="yes" < >clover-setup
OR:
Specify an initstring at runtime via system properties
You can override the Clover at runtime via system properties. Two (three?) systeminitstring
properties are supported:

clover.initstring If not null, the value of this property is treated as an absolute file
path to the Clover registry file

clover.initstring.basedir If not null (and the systyem property is notclover.initstring
set), the value of this property is used as the base directory for the
file specified at compile-time in the initstring to resolve the full path
to the Clover registry.

clover.initstring.prefix If not null (and the or clover.initstring clover.initstrin
 system properties are not set), the value of thisg.basedir

property is prepended to the string value of compile-time specified
initstring to resolve the full path to the Clover registry.

To set one of these properties, you need to pass it on the command line when Java is launched, using the
parameter:-D

java -Dclover.initstring=... myapplication.Server

For application servers, this may involve adding the property to a startup script or batch file.

Step 3: Set Your Classpath Correctly

You must put (or the appropriate Clover plugin jar) in the classpath for any JVM that will loadclover.jar
classes that have been instrumented by Clover. How you go about this depends on the nature of the application
you are testing and the environment you are deploying to.

In some cases, the must be on the classpath of the actual webserver, not just on the classpath ofclover.jar
the webapp that is instrumented. This is to ensure Clover can properly flush its coverage data when the JVM of
the webserver is shutdown.

Collecting Per-Test Coverage from Distributed Builds

 The steps below require you to have carried out the previous steps on this page (related to 'Collecting Overall
Coverage from Distributed Builds').

For methods two and three in the sequence above, you will need to copy the Clover registry file
from the location on the build machine to the appropriate directory on each of the execution
machines (as part of the test deployment process).
This needs to occur:

 after the Clover build is complete, anda.
 before you run your tests.b.

Once test execution is complete, you will need to copy the coverage recording files from each
remote machine to the path on the build machine in order to generate coverageinitstring
reports.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 142

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Enabling or Disabling Distributed Coverage at Runtime

Clover's Distributed Coverage feature is enabled at runtime by making use of command-line options.

This can be done without the need for re-instrumentation or compilation of source files.

Enabling Distributed Coverage
Distributed coverage can be enabled via setting this System property:

-Dclover.distributed.coverage=ON

This will enable distributed coverage with default settings (host=localhost, port=1198, timeout=5000ms,
numClients=0, retryPeriod=1000ms, name=clover.tcp.server).

In case when you cannot use default settings, you can pass specific value for any of attributes using the
"key=value" syntax passed as value:clover.distributed.coverage

host - host name of the "Clover Server"
port - port on which the Clover will listen
numClients - number of "Clover Clients" to connect until server starts test execution
timeout - connection timeout in miliseconds
retryPeriod - inverval between connection retries in miliseconds
name - name of the Clover server service (URL is host:port/name)

Example:

-Dclover.distributed.coverage=host=myhost;port=7777;numClients=2

Clover also needs to know which JVM is hosting your unit tests ("Clover Server"), by providing the following
system property:

-Dclover.server=true

Disabling Distributed Coverage
Distributed coverage can be disabled by setting this System property on either the Test or the Application JVM:

-Dclover.distributed.coverage=OFF

This will turn off distributed coverage for the JVM in which this is set, regardless of what was instrumented.

For more configuration options and how to do this in Ant and Maven, see the and Clover-for-Ant Clover-for-Mave
 documentation.n 2

Configuration Complete
Distributed Per-Test Coverage in Clover will now operate when running distributed builds. Detailed reports will
now be available.

Troubleshooting

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 143

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Server does not wait for clients, despite having numClients != 0 in build configuration

Execution of tests hangs when numClients != 0

Sample code

package com.my.webapp;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class MyServletContextListener implements ServletContextListener {
 @Override
 public void contextInitialized(ServletContextEvent servletContextEvent) {
 System.out.println("Web App Initialized");
 }
 @Override
 public void contextDestroyed(ServletContextEvent servletContextEvent) {
 System.out.println("Web App Destroyed");
 }
}

Do not use runtime option if numClients!=0 was set in-Dclover.distributed.coverage=ON
instrumentation. The provided at runtime will override settingclover.distributed.coverage numClients
from instrumentation, setting it to 0.

As a consequence your tests on server will start immediately, without waiting for clients to connect. It
can result in lower or zero coverage.

Instead of this:

enable clover.distributed.coverage option in build file or
use -Dclover.distributed.coverage=numClients=N (where N is a number >= 0) at runtime

Server-client dependency loop

It can happen that your "Server" will wait for "Clients" to connect, while clients will wait until server starts
unit test execution - it depends on how tests are written.

This is a typical case for web applications running in container (like Tomcat, JBoss), when your unit test
calls a servlet class (e.g. via HTTP request). The issue is as follows:

unit tests on <<server>> are waiting until all clients are connected (numClients != 0) but
none of the clients will connect until servlet class is loaded in the container, which happens only
when first request comes (and it will not come, due to the point above)

In order to avoid this circular dependency you have to:

create a servlet context listener (and instrument it by Clover)
the class can do virtually nothing
the listener class will be automatically loaded by container at application deployment
(without waiting for any web request)
as soon as class is loaded by classloader, it will automatically connect Clover recorder
instance to the "Clover server"; Clover server will start its execution

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 144

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

<web-app>
 <!-- ... -->
 <listener>
 <listener-class>com.my.webapp.MyServletContextListener</listener-class>
 </listener>
 <!-- ... -->
</web-app>

Full code example is available on Bitbucket: (src/it/webapp).https://bitbucket.org/atlassian/maven-clover2-plugin

Using Distributed Per-test Coverage with Clover-for-Ant

This page contains instructions on how to collect per-test coverage from a set of functional tests, which run in
multiple JVMs (Java Virtual Machines). This may be necessary when starting a web server with the Jetty Runner
or Tomcat Tasks, for example.

On this page:

General Overview
Option 1. Enabling Distributed Coverage at Runtime

Setting the System Properties in the Ant JUnit Task
Setting a System Property in the Java task that starts the WebServer

Option 2. Configuring Distributed Coverage at Instrumentation Time
Step 1: Activate the Distributed Per-Test Coverage Feature
Step 2: Specify the 'clover.server' property on JVM running the Tests

Related Links

General Overview

Clover collects per-test coverage for tests running in a separate JVM by sending messages using the tcp
protocol. The JVM hosting the tests is the 'Clover Server' and the JVM(s) hosting the application are the 'Clover
Clients'. The 'Clover Server' (ie. the JVM running your tests) needs to be marked as such via a System
Property: 'clover.server=true'. If this property is not set, or is set to 'false', the JVM will be in 'Clover Client' mode.

If you are testing multiple projects on the same machine at the same time (such as in a Continuos Integration
environment), you will need to ensure a unique port for each build is reserved and configured. By default, Clover
starts a socket server on port 1198.

Distributed per-test coverage will give you insight as to what functional tests covered what application code. It
also allows you to drastically reduce test execution time by using to only run the testsClover's Test Optimization
for code that was modified since the previous build.

To configure Clover for collection of per-test coverage from distributed builds, you have two options:

Recommended: By setting a System Property on the JVM running your tests and the JVM hosting your
application (e.g. the webserver)
By configuring Clover before instrumenting (clover-setup, clover-instr) your source files - and setting a
System property on the test JVM (Only Recommended if setting a System Property on your webserver
poses a problem.)

Option 1. Enabling Distributed Coverage at Runtime

Once your Clover-instrumented application has been deployed, and your tests have been instrumented and
compiled with Clover, distributed per-test coverage can be enabled and configured at runtime using just two
System Properties.

Both JVMs require the property set to , and the JVM running the tests'clover.distributed.coverage' ON
require the property set to .'clover.server' 'true'

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin
http://blogs.webtide.com/janb/entry/jetty_runner

Documentation for Clover 4.0 145

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 TIP: the takes default settings (host=localhost, port=1198, timeout=5000ms,clover.distributed.coverage=ON
numClients=0, retryPeriod=1000ms, name=clover.tcp.server). In case when you cannot use default settings, you
can pass specific value for any of attributes using the "key=value" syntax passed as clover.distributed.coverage
value:

host - host name of the "Clover Server"
port - port on which the Clover will listen
numClients - number of "Clover Clients" to connect until server starts test execution
timeout - connection timeout in miliseconds
retryPeriod - inverval between connection retries in miliseconds
name - name of the Clover server service (URL is)host:port/name

Example:

-Dclover.distributed.coverage=host=myhost;port=7777;numclients=2

For the following examples, we are using the to start the Jetty Webserver, and the Ant JUnit TaskJetty Runner
to run the tests.

Setting the System Properties in the Ant JUnit Task

<junit fork="true" forkmode="once" showoutput="true" printsummary="true">
 <sysproperty key="clover.server" value="true"/>
 <sysproperty key="clover.distributed.coverage" value="ON"/>
 ...
</junit>

Setting a System Property in the Java task that starts the WebServer

The JVM running your webserver also requires the property set to .clover.distributed.coverage ON

<java jar="${jetty.jar}" fork="true">
 ...
 <jvmarg value="-Dclover.distributed.coverage=ON"/>
</java>

If you are unable to set a System Property on the JVM running your webserver, use the second approach
described below.

Option 2. Configuring Distributed Coverage at Instrumentation Time

It is sometimes more convenient to enable distributed Coverage when you enable Clover - before
instrumentation of your source code.
The following approach removes the need to set any system properties at all on the JVM running the
WebServer.

Step 1: Activate the Distributed Per-Test Coverage Feature

Both the and tasks can be configured with this nested element:<clover-setup> <clover-instr>

<distributedCoverage/>

If this element is present, then Clover will run in 'distributed mode' at test time. If you wish to modify any
configuration options such as the port to listen on, or the number of clients expected to attach to the testing
session, you can specify these as attributes on the element like so:<distributedCoverage>

http://creativecommons.org/licenses/by/2.5/au/
http://blogs.webtide.com/janb/entry/jetty_runner
http://confluence.atlassian.com/display/CLOVER/%28hidden+draft%29+clover-setup#%28hiddendraft%29clover-setup-distributedCoverage

Documentation for Clover 4.0 146

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-setup>
 <distributedCoverage port="1234" numClients="1"/>
</clover-setup>

This will enable distributed per-test coverage to be collected. Please see the for thedocumentation
<distributedCoverage/> element for more options.

Step 2: Specify the 'clover.server' property on JVM running the Tests

Add the system property to the JUnit or TestNG Ant task configuration, and ensure theclover.server
forkMode parameter is set to 'once':

e.g.

<junit fork="true" forkmode="once" showoutput="true" printsummary="true">
 <sysproperty key="clover.server" value="true"/>
 ...
</junit>

If you have specified the option to something greater than 0, your tests can be started prior tonumClients
starting the webserver. Clover will wait until have connected to the testing session before allowingnumClients
the tests to start running.

Related Links

About Distributed Per-Test Coverage

About Test Optimization

Working with Restricted Security Environments

In some Java environments, such as J2EE containers, applet environments, or applications deployed via Java
, security restrictions are applied to hosted Java code that restrict access to various system resources.Webstart

To use Clover in these environments, Clover needs to be granted various security permissions for it to function.
This requires the addition of a entry to the security policy file for the Clover jar. For background on thegrant
syntax of the policy file, see . For background on settingDefault Policy Implementation and Policy File Syntax
Java security policies in general, see .Permissions in the Java SDK

Recommended Permissions

Clover requires access to the Java system properties for runtime configurations, as well as read write access to
areas of the file system to read the Clover coverage database and to write coverage information. Clover also
uses a shutdown hook to ensure that it flushes any as yet unflushed coverage information to disk when Java
exits. To support these requirements, the following security permissions are recommended:

grant codeBase "file:/path/to/clover.jar" {
 permission java.util.PropertyPermission "*", "read";
 permission java.io.FilePermission "<<ALL FILES>>", "read, write";
 permission java.lang.RuntimePermission "shutdownHooks";
}

Working in OJVM

OJVM - Oracle Java Virtual Machine

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/%28hidden+draft%29+clover-setup#%28hiddendraft%29clover-setup-distributedCoverage
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html

Documentation for Clover 4.0 147

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.
3.
4.

5.
a.

6.

Step by step

Download and install Oracle 11 database or higher (note that the Express EditionStandard Edition One
does not support Java)
Download and unpack OJVMTutorial

 into <clover_home>Download and unpack Clover-for-Ant
Install <clover_home>/lib/clover.jar into Oracle database using the loadjava tool:

Compile OJVMTutorial e.g. by using javac or loadjava tool
define location where coverage snapshots will be written

Configure security manager as follows:

Provide Run application,

Example

Down

OJVMTutorial
http://docs.oracle.com/cd/B19306_01/java.102/b14187/chnine.htm#BABJBJGE - Security for Oracle
Database Java Applications

9. Clover Target Reference

Clover provides a set of high level, preconfigured Ant targets. A target is a high-level, pre-configured set of
functionality that you can use to quickly integrate Clover. They can be launched by adding them as values to Ant
on the command line.

Each target contains a number of logically grouped lower-level pieces of functionality made up of Clover-specific
 and . These allow you to harness Clover's feature set, applying the concept of Tasks Types convention over

. This should help you avoid laboriously coding your own targets from scratch — allowing you toconfiguration
rapidly begin using Clover, no matter how complex your environment.

 To enable Ant targets in Clover, you need to firstly follow the .Clover Quickstart Guide

On this page:

Using a Target
with.clover (target)
clover.all (target)
clover.clean (target)
clover.current (target)
clover.report (target)
clover.save-history (target)
clover.snapshot (target)
clover.snapshot.file (target)

Custom Targets

Using a Target

Each Clover target typically has a name (and optional Ant properties) that can be used on the command line, as
follows:

ant clover.all

http://creativecommons.org/licenses/by/2.5/au/
http://www.oracle.com/us/products/database/standard-edition-one/overview/index.html
http://www.atlassian.com/software/clover/download
http://docs.oracle.com/cd/B19306_01/java.102/b14187/chnine.htm#BABJBJGE

Documentation for Clover 4.0 148

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

In the above example, we are running the target. This runs a ' ' process, creates a build withclover.all clean
Clover applied and then generates a Clover report.

with.clover (target)

Enables Clover on the current build. There are no properties for this target.

Example:

ant with.clover

clover.all (target)

Runs (in that order) from a single target.clover.clean, with.clover, <test.target>, clover.report, clover.log

clover.all Properties:

Property
name

Description Options Dependency

test.target Defines the name of a custom target to run
the tests.

inheritrefs
(TRUE/FALSE)

clover.clean,
with.clover

Example:

ant clover.all -Dtest.target=run.tests

In the example above, we are specifying the property. This is fed another value, (shown as test.target run
). Note that in this example could be replaced by the name of any custom target you may.tests run.tests

have created yourself in build.xml.

clover.clean (target)

Deletes the clover database and the directory.clover.dest
There are no properties for this target.

Example:

ant clover.clean

clover.current (target)

Generates HTML and XML reports to using .clover.dest project.title

clover.current Properties:

Property
name

Description Options Dependency

project.title A string value, the user-specified name for this project None None

clover.dest A system path, the destination directory for clover reports for this
project

None None

clover.span A time defining the to use when creatinginterval time span
historical reports

None None

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 149

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Example:

ant clover.current -Dproject.title="MyProject"

clover.report (target)

This is the same as clover.current, i.e. it generates HTML and XML reports to using clover.dest project.t
. Additionally, a history report will also be created using the historypoints in itle clover.project.historyd

.ir

clover.report Properties:

Property name Description Options Dependency

clover.historypoint.projectdir A path location, where history points are stored. None None

clover.dest A system path, the destination directory for clover
reports for this project

None None

clover.span A time defining the to use wheninterval time span
creating historical reports

None None

Example:

ant clover.report -Dclover.historypoint.projectdir="\myprojects\project3\history\"

clover.save-history (target)

Saves a history point to .clover.project.historydir

clover.save-history Properties:

Property name Description Options Dependency

clover.project.historydir A path location, where history points are stored. None None

test.target Defines the name of a custom target to run the
tests.

inheritrefs
(TRUE/FALSE)

clover.clean,
with.clover

clover.span A time defining the to useinterval time span
when creating historical reports

None None

Example:

ant clover.save-history

clover.snapshot (target)

Saves a snapshot file to assist with Clover's feature. There are no properties for this target.Test Optimization

Example:

ant clover.snapshot

clover.snapshot Properties:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 150

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Property name Description Options Dependency

clover.snapshot.file Defines the location of the snapshot file to use when saving
optimized data. For use with Clover's featurTest Optimization
e.

None None

clover.snapshot.file (target)

Defines the location of the snapshot file to use when saving optimized data. For use with Clover's Test
 feature. Optimization

Example:

ant clover.snapshot.file

Custom Targets

Clover targets can be modified or overwritten. You can also create your own targets by specifying targets with
the same names in .build.xml

A. Integrating Clover-for-Ant with other tools

This page contains tutorials showing how Clover-for-Ant can be integrated with different tools or frameworks:

Using Clover-for-Ant with GWT
Instrumenting JSP files
Using Clover with non-standard test framework (i.e. not handled by)Clover default test detection
Integrating Clover with JUnit4 Parameterized Tests

Clover can be configured in many ways, depending on how the development environment is configured or
application is structured. Useful manuals:

Using Clover for web applications
Using Clover in various environment configurations

Integrating Clover with JUnit4 Parameterized Tests

Introduction

JUnit4 framework version has introduced a feature which allows to run the same test multiple times, using4.10
different data as input.

In order to use this, you have to:

annotate test class with @RunWith(Parameterized.class)
declare a method returning collection of input values and annotate this method with data() @Parameters
annotation.
declare a test method annotated with @Test

Furthermore, the JUnit version 4.11 has added a 'name' attribute to the @Parameters annotation - thanks to this,
you can define a custom name for a test. You can use variables such as "{index}" for an iteration number and
"{0}, {1}, ... " for N-th input argument in a test name.

For example:

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/clover-setup#clover-setup-Testsources

Documentation for Clover 4.0 151

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

@RunWith(Parameterized.class)
public class PersonTest {
 @Parameterized.Parameters(name = "{0} is a {1} [{index}]")
 public static Collection<Object[]> data() {
 return Arrays.asList(new Object[][]{
 {"Alice", "woman"}, {"Bob", "man"}, {"Rex", "unknown"}
 });
 }
 protected String input;
 protected String expected;
 public PersonTest(String input, String expected) {
 this.input = input;
 this.expected = expected;
 }
 @Test
 public void test() {
 assertEquals(expected, new Person(input).getSex());
 }
}

See more details on .JUnit wiki page

Integrating Clover

As such parametrized tests are being executed by JUnit's test runner, Clover has no problem with recording test
results for them. However, till Clover 3.3.0 there's was no information about which test iteration has failed - all
test iterations had the same same:

Clover 3.3.0 introduced a JUnitTestRunnerInterceptor, which can be attached to JUnit's runner. It "listens" which
test is being executed and what runtime name it has (evaluated by JUnit). Thanks to this, you can see an
iteration number:

http://creativecommons.org/licenses/by/2.5/au/
https://github.com/junit-team/junit/wiki/Parameterized-tests

Documentation for Clover 4.0 152

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

as well as full test names () in the reports:@Parameters(name=...)

Unfortunately, neither Ant's <junit> task nor JUnit itself (via command line argument) has a way to attach test
listeners. It must be done programmatically. You have to instantiate a JUnitCore, add Clover's
JUnitTestRunnerInterceptor to it and call core.run() method passing test class(es) as an argument.

Example:

import org.junit.runner.JUnitCore;
import com.atlassian.clover.recorder.junit.JUnitTestRunnerInterceptor;

public class RunJUnit4WithClover {
 public static void main(String[] args) {
 JUnitCore core= new JUnitCore();
 core.addListener(new JUnitTestRunnerInterceptor());
 core.run(SquareTest.class);
 }
}

As soon as test execution is finished you can generate a Clover report.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 153

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

References

https://github.com/junit-team/junit/wiki/Parameterized-tests
https://bitbucket.org/atlassian/clover-examples parameterized-junit4-example

Using Clover-for-Ant with GWT

Clover with manual GWT integration

The following example is based on GWT SDK 2.5.

1) Download and install

GWT SDK 2.5 - (referred as <gwt-sdk>)http://code.google.com/p/google-web-toolkit/downloads/list

2) Open the sample DynaTable application (located in <gwt-sdk>/samples/DynaTable; referred as <project_dir>)
and enhance file by adding:build.xml

<clover-setup> with includes="'' for server-side code
<clover-report> or <clover-html-report>
clover.jar to runtime classpath

Example:

LIMITATION
Clover's JUnitTestRunnerInterceptor can correctly handle parameterized test names when test methods
from a single test case class are executed sequentially. It means that you shall not use a test runner
which will run all iterations in parallel.

On the other hand, running entire test cases or test suites in parallel is allowed.

You can instrument server-side code only. This is due to a nature of the Google Web Toolkit which
translates client and shared parts into a JavaScript. If you try to instrument client code, GWT will search
for sources of all referenced classes, including the Clover instrumentation, which would cause a build
failure.

http://creativecommons.org/licenses/by/2.5/au/
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://bitbucket.org/atlassian/clover-examples
http://code.google.com/p/google-web-toolkit/downloads/list

Documentation for Clover 4.0 154

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<project name="DynaTable" default="build" basedir=".">
 <!-- Add following properties and targets -->

 <property name="clover.jar" location="${user.home}/clover.jar"/>
 <property name="clover.license" location="${user.home}/clover.license"/>
 <property name="clover.db" location="clover/db/clover.db"/>
 <property name="clover.report" location="clover/report"/>
 <taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

 <target name="init" if="with.clover">
 <clover-setup initstring="${clover.db}">
 <fileset dir="src"
includes="com/google/gwt/sample/dynatable/server/**"/>
 </clover-setup>
 </target>

 <target name="report">
 <clover-html-report initstring="${clover.db}" outdir="${clover.report}"/>
 </target>

 <!-- ... -->

 <!-- Add the "init" target to depends="..." -->
 <target name="javac" depends="libs, init" description="Compile java source to
bytecode">
 <!-- ... -->
 </target>

 <!-- Add the clover.jar to classpath -->

 <target name="devmode" depends="javac" description="Run development mode">
 <java failonerror="true" fork="true"
classname="com.google.gwt.dev.DevMode">
 <classpath>
 <pathelement location="src"/>
 <path refid="project.class.path"/>
 <pathelement location="../../validation-api-1.0.0.GA.jar" />
 <pathelement location="../../validation-api-1.0.0.GA-sources.jar"
/>
 <pathelement location="${clover.jar}"/> <!-- ADD THIS -->
 </classpath>
 <!-- ... -->
 </java>
 </target>

 <!-- ... -->

</project>

3) Build application, run tests and generate Clover report.

 GWT requires Java 1.6 or above

build.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 155

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

ant devmode -Dwith.clover=true
... open web browser, close GWT console ...
ant report

Open file. You shall see a report like this:<project_dir>/clover/report/index.html

References

See also

Using Clover with the GWT-maven plugin.

Clover-for-Ant Installation Guide

1. Download Clover

For the quickest and easiest installation options, see the instead of this page.QuickStart Guide

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 156

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Download Clover from .http://www.atlassian.com/software/clover/download

Unzip the Clover distribution into a directory. This directory will be referred to as in this guide.CLOVER_HOME

2. Install your Clover license

To install your Clover license file, you need to do one of the following:

Place the license file next to the Clover jar file (i.e. in);CLOVER_HOME/lib
or:
Place the license file on the Java Classpath that will be used to run Clover;
or:
Place the license file on the file system somewhere, and then set the Java System Property
clover.license.path to the absolute path of the license file.

Note that the name of the license file must be clover.license

3. Install clover.jar
add to Ant's build.xml
(recommended)
or
add to Ant's Classpath

Related topics

Supported Platforms
Clover-for-Ant Upgrade Guide
Clover Release Notes

Adding to Ant's build.xml

This is the recommended method of installing Clover.

Adding Clover to your build is done by adding the following to your buildfile (e.g. build.xml):

<taskdef resource="cloverlib.xml" classpath="/path/to/clover.jar"/>

 '/path/to' is the path to the 'clover.jar' file. Hence, a typical example of the 'classpath' parameter might be cla
.sspath="../lib/clover.jar"

Checking if Clover is available for the build (optional)

In some cases you may want to check if Clover is available before executing Clover-related targets. For
example, you may need to ship the build file to others who may not have Clover installed. To check Clover's
availability you can make use of the standard Ant task:<available>

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/download

Documentation for Clover 4.0 157

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

<target name="-check.clover">
<available property="clover.installed"
classname="com.atlassian.clover.CloverInstr" />
</target>

<target name="guard.noclover" depends="-check.clover" unless="clover.installed">
<fail message="The target you are attempting to run requires Clover, which doesn't
appear to be installed"/>
</target>

<target name="with.clover" depends="guard.noclover">
...

Troubleshooting

To enable logging of the Clover installation, set the environment variable to ANT_OPTS '-Dclover.deb
ug=true'
Run ant with the and options-debug -verbose
Certain environments may require the clover.jar to be placed directly on Ant's Classpath. Details are
outlined .here
To enable logging of Clover at runtime set the environment variable -Dclover.logging.level=debu

 on the JVM that is running your Clover instrumented code. e.g. the JUnit JVM, the Tomcat JVM.g

NEXT STEP

See Clover for Ant Best Practices

Adding to Ant's Classpath

Below are three options for adding the clover.jar to your Ant classpath directly.

Installing Clover locally for a single user

Create a directory ${user.home}/.ant/lib
Copy clover.jar to ${user.home}/.ant/lib

Installing Clover at an arbitary location

You can install and use Clover at an arbitary location and then refer to it using the -lib command line option with
Ant:

ant -lib CLOVER_HOME/lib buildWithClover

(where is the directory where Clover was installed.)CLOVER_HOME

Installing Clover globally into Ant

Note
This is an alternative method of installing Clover, and only applies to certain environments.
The normal and recommended method of installing Clover is outlined on .Adding to Ant's build.xml

Note
The location of ${user.home} depends on your JVM and platform. On Unix systems, ${user.home}
usually maps to the user's home directory. On Windows systems, ${user.home} will map to
something like C:\Documents and Settings\username\. Check your JVM documentation for more
details.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 158

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Copy into (since all jars in this directory are automatically added to Ant'sclover.jar ANT_HOME/lib
classpath by the scripts that start Ant).

Alternatively, you can add to the system environment variable beforeCLOVER_HOME/clover.jar CLASSPATH
running Ant. For information about setting this variable, please consult your Operating System documentation.

NEXT STEP

See Clover for Ant Best Practices

Clover-for-Ant Upgrade Guide

General instructions

We've taken care to make upgrading Clover straightforward. Follow these simple steps to upgrade
Clover-for-Ant:

1. Replace your existing clover.jar with the new clover.jar
You can do this by simply replacing the the old .jar file with the new .jar file.

2. Obtain and install a Clover license (optional)
Installing new license is necessary when you're installing a Clover version released after end of support date of
your current license.

3. Delete any existing Coverage database (optional)

Clover's database format may change in newer versions. In such case you'll get a build error with a message
informing about database incompatibility. In such case you have to delete old database files. The Clover
database is created at the location specified in the attribute of .initstring <clover-setup>

 It's quite common to have Clover-for-Ant configured in such way that database files are removed on every
'ant clean' call; thanks to this incompatible databases can be removed automatically.

Upgrading from specific releases

Please see the and the for version-specific upgradeClover Release Notes Clover-for-Ant Changelog
instructions.

Clover-for-Ant Changelog
Please also refer to the and .Clover-for-Eclipse Changelog Clover-for-IDEA Changelog

Clover-for-Ant Changelog

The changes for the latest version are as follows:

Changes in Clover-for-Ant 4.0.0

July 11, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
 for more details.4.0 Release Notes

Implemented features and fixes

Key Summary T P

CLOV-1164 Drop support for Ant 1.6.x (internal)

CLOV-1345 Apply ADG in the HTML report

CLOV-1481 Invalid instrumentation code for test methods inside anonymous inline classes

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro

Documentation for Clover 4.0 159

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

CLOV-1512 The "Show methods" link does not open the modal dialog

4 issues

See also change log for Clover-for-Maven2&3, Clover-for-Eclipse, Clover-for-IDEA, Clover-for-Grails.

Known major bugs

Key Summary T P Fix Version/s Resolution

CLOV-1490 Clover safeEval method is imcompatible with Groovy's @CompileStatic annotation 4.0.1 Unresolved

1 issue

Changes in Clover-for-Ant 3.3.0

March 31, 2014

This is a feature release with dedicated support for the Spock framework and JUnit4 Parameterized Tests.

See for more details.Clover 3.3 Release Notes

Implemented features and fixes

Key Summary T P

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

CLOV-1462 ClassNotFoundException when running tests in IDEA 13.1 RC with Clover enabled

CLOV-1458 Grails Clover Plugin Causing ConcurrentModification Error

CLOV-1455 ///Clover:OFF does not work with lambdas

CLOV-1451 Fix uncheched warnings for code instrumented by Clover

CLOV-1441 Clover plugin doesn't load on IDEA 13 Startup

7 issues

See also change log for Clover-for-Maven2&3, Clover-for-Eclipse, Clover-for-IDEA, Clover-for-Grails.

Known major bugs

Key Summary T P Fix Version/s Resolution

CLOV-1490 Clover safeEval method is imcompatible with Groovy's @CompileStatic annotation 4.0.1 Unresolved

1 issue

Older versions

Looking for older versions? See . Clover-for-Ant Changelog for Clover 3.2

Changes in Clover-for-Ant 4.0.0

Changes in Clover-for-Ant 4.0.0

July 11, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
 for more details.4.0 Release Notes

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CLOV+AND+fixVersion+%3D+%224.0.0%22+and+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+and+status+%3D+Closed+and+resolution+%3D+Fixed+order+by+type+desc+&src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.1%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+priority+%3E%3D+Major+order+by+priority+desc++++++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CLOV+AND+fixVersion+%3D+%223.3.0%22+and+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+and+status+%3D+Closed+and+resolution+%3D+Fixed+order+by+type+desc++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.1%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+priority+%3E%3D+Major+order+by+priority+desc+++++++&src=confmacro
https://confluence.atlassian.com/display/CLOVER032/Clover-for-Ant+Changelog

Documentation for Clover 4.0 160

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Implemented features and fixes

Key Summary T P

CLOV-1164 Drop support for Ant 1.6.x (internal)

CLOV-1345 Apply ADG in the HTML report

CLOV-1481 Invalid instrumentation code for test methods inside anonymous inline classes

CLOV-1512 The "Show methods" link does not open the modal dialog

4 issues

See also change log for Clover-for-Maven2&3, Clover-for-Eclipse, Clover-for-IDEA, Clover-for-Grails.

Known major bugs

Key Summary T P Fix Version/s Resolution

CLOV-1490 Clover safeEval method is imcompatible with Groovy's @CompileStatic annotation 4.0.1 Unresolved

1 issue

Changes in Clover-for-Ant 3.3.0

Changes in Clover-for-Ant 3.3.0

March 31, 2014

This is a feature release with dedicated support for the Spock framework and JUnit4 Parameterized Tests.

See for more details.Clover 3.3 Release Notes

Implemented features and fixes

Key Summary T P

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

CLOV-1462 ClassNotFoundException when running tests in IDEA 13.1 RC with Clover enabled

CLOV-1458 Grails Clover Plugin Causing ConcurrentModification Error

CLOV-1455 ///Clover:OFF does not work with lambdas

CLOV-1451 Fix uncheched warnings for code instrumented by Clover

CLOV-1441 Clover plugin doesn't load on IDEA 13 Startup

7 issues

See also change log for Clover-for-Maven2&3, Clover-for-Eclipse, Clover-for-IDEA, Clover-for-Grails.

Known major bugs

Key Summary T P Fix Version/s Resolution

CLOV-1490 Clover safeEval method is imcompatible with Groovy's @CompileStatic annotation 4.0.1 Unresolved

1 issue

Clover-for-Maven 2 and 3

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1164?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro
https://jira.atlassian.com/browse/CLOV-1481?src=confmacro
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/browse/CLOV-1512?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CLOV+AND+fixVersion+%3D+%224.0.0%22+and+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+and+status+%3D+Closed+and+resolution+%3D+Fixed+order+by+type+desc+&src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.1%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+priority+%3E%3D+Major+order+by+priority+desc++++++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1455?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1451?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CLOV+AND+fixVersion+%3D+%223.3.0%22+and+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+and+status+%3D+Closed+and+resolution+%3D+Fixed+order+by+type+desc++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/browse/CLOV-1490?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.1%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+priority+%3E%3D+Major+order+by+priority+desc+++++++&src=confmacro

Documentation for Clover 4.0 161

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover-for-Maven 2 and 3 Documentation

What is Clover-for-Maven 2 and 3?

Clover-for-Maven 2 and 3 integrates the
industry-leading code coverage tool, Atlassia

 with the Apache Maven buildn Clover
automation tool. Clover-for-Maven 2 and 3
allows you to easily measure the coverage of
your unit tests, enabling targeted work in unit
testing — resulting in stability and enhanced
quality code with maximal efficiency of effort.

Getting Started with Clover for Maven 2

and 3

Download Clover for Maven 2 and 3

Quick Start Guide

Installation Guide

Changelog for Clover-for-Maven 2 and 3

Using Clover for Maven 2 and 3

User's Guide

Maven Site Documentation

Resources and Support

Atlassian Answers

Clover Knowledge Base

FAQ page

Technical Support

Offline Documentation

You can download the Clover documentation
in PDF, HTML or XML format.

Recently Updated

Clover Road Map
Aug 12, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Upgrading third party libraries
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Updating optimization snapshot file
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Hacking Clover
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 4 - Test Optimization Tutorial
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 3 - Automating Coverage Checks
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 2 - Historical Reporting
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/clover/
http://www.atlassian.com/clover/
https://www.atlassian.com/software/clover/download
http://docs.atlassian.com/maven-clover2-plugin/latest
https://answers.atlassian.com/tags/clover/
https://confluence.atlassian.com/display/CLOVERKB/Clover+Knowledge+Base+Home
http://support.atlassian.com
https://confluence.atlassian.com/display/ALLDOC
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313465693&selectedPageVersions=17&selectedPageVersions=16
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=310379086&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317949806&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313459430&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=171966945&selectedPageVersions=51&selectedPageVersions=50
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=73793592&selectedPageVersions=14&selectedPageVersions=13
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71600301&selectedPageVersions=48&selectedPageVersions=47

Documentation for Clover 4.0 162

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Part 1 - Measuring Coverage
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover 4.0 Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

A side-by-side comparison of the Classic and the ADG HTML report
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Sonar Clover Plugin
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover Command Line Tools
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-Grails Changelog
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Configuring method context filters
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

About Clover-for-Maven 2 and 3

Overview

The Clover-for-Maven 2 and 3 plugin allows you to produce Clover code coverage reports from the Maven 2 and
3 build tools. It provides detailed information to highlight areas of low coverage in your project, helping to guide
your unit-testing activities.

Open Source status

This plugin is open source, under the Apache license. See .Developer Guide

License

The plugin includes a built in evaluation license.

Support

Please report any issues with the Clover-for-Maven 2 and 3 plugin in the under the "MavenClover JIRA project
Plugin" component.

Acknowledgements

The Maven 2 and 3 Clover plugin is derived from the original Maven 2 plugin for Clover 1 written by Vincent
Massol. The has been changed from to groupId org.apache.maven.plugins com.atlassian.maven.p

.lugins

Maven Site Docs
For documentation presented in the standard Maven format, see the .Maven Site Docs

Clover-for-Maven 2 and 3 Quick Start Guide
To get started with Clover-for-Maven 2 and 3, carry out the following steps.

Add com.atlassian.maven.plugins in .m2/settings.xml

Before you get started, add this to your file so you can reference Clover by its short name .m2/settings.xml
.clover2

<pluginGroups>
 <pluginGroup>com.atlassian.maven.plugins</pluginGroup>
</pluginGroups>

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=72548380&selectedPageVersions=44&selectedPageVersions=43
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=624198431&selectedPageVersions=7&selectedPageVersions=6
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=632980339&selectedPageVersions=4&selectedPageVersions=3
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71599170&selectedPageVersions=49&selectedPageVersions=48
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317950474&selectedPageVersions=3&selectedPageVersions=2
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=98665164&selectedPageVersions=12&selectedPageVersions=11
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=311918938&selectedPageVersions=15&selectedPageVersions=14
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313467899&selectedPageVersions=5&selectedPageVersions=4
https://jira.atlassian.com/browse/CLOV
http://docs.atlassian.com/maven-clover2-plugin/latest/

Documentation for Clover 4.0 163

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Run Clover goals from a command line

The quickest and easiest way to try Clover is from the command line:

mvn clean clover2:setup test clover2:aggregate clover2:clover

Goals:
clean - to ensure that all sources will be recompiled (Clover uses)source-code instrumentation
clover2:setup - to initialize Clover and instrument sources
test - to compile code, run tests and record code coverage
clover2:aggregate - to merge coverage data from a multi-module project
clover2:clover - to generate HTML report for a project

You can find a report in directory.target/site/clover

Further reading

For more instructions, see the .Clover-for-Maven 2 and 3 User's Guide

For documentation presented in the standard Maven format, see the .Maven Site Docs

Clover-for-Maven 2 and 3 User's Guide
The Maven 2 and 3 Clover plugin produces Clover reports from Maven 2 and 3 projects.

On this page:

Basic Usage
Configuring instrumentation
Configuring reports
Configuring a coverage goal
Using Test Optimization
Working with distributed systems
Working with multi-module projects
Best practices
Using Clover with other Maven plug-ins

Basic Usage

How to quickly set up basic Clover configuration in settings.xml and pom.xml and run Clover's goals from a
command line.

Configuring instrumentation

How to set which source files shall be instrumented, control level of instrumentation, set JDK level and location
of coverage data.

Configuring reports

How to choose report formats, generate historical reports and customize report content.

Configuring a coverage goal

How to set a coverage level as a quality gate and fail a build if it drops below certain threshold or drops
compared to a previous build.

Maven Site Documentation
For documentation presented in the standard Maven format, see the .Maven Site Docs

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest
http://docs.atlassian.com/maven-clover2-plugin/latest

Documentation for Clover 4.0 164

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Using Test Optimization

Test Optimization saves valuable time in the build and test cycle, by only running tests that cover code which
has changed since the last build.

Working with distributed systems

Using Distributed Per-test Coverage
Using Clover in various environment configurations
Using Clover for web applications

Working with multi-module projects

You can use the goal to combine the Clover databases of child projects into a single databaseclover2:aggregate
at the parent project level.

You can also create a single database for all modules with parameter set to in singleCloverDatabase true clover
 goal.2:setup

Because of this , aggregation of databases occurs before the child databases have been generated,Maven bug
when you use the target.site

You can create Clover reports for a multi-module project with the command line mvn clover2:setup test
.clover2:aggregate clover2:clover

Best practices

Best Practices for Maven
Clover Performance Tuning

Using Clover with other Maven plug-ins

Compiling Groovy with GMaven plugin
Compiling Groovy with Groovy Eclipse Plugin

Using Clover via the maven-antrun-plugin
Using with Surefire and Failsafe Plugins

Using Clover with Maven + surefire-test + inner test classes
Using Clover with the GWT-maven plugin
Using Clover with JAXB plugin
Using Clover with the maven-bundle-plugin
Using Clover with Maven Tycho Plugin

Basic usage

Configuring Clover's short name in .m2/settings.xml

Before you get started, add this to your file so you can reference Clover by its short name .m2/settings.xml
.clover2

<pluginGroups>
 <pluginGroup>com.atlassian.maven.plugins</pluginGroup>
</pluginGroups>

Running Clover goals from the command line

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/aggregate-mojo.html
https://docs.atlassian.com/maven-clover2-plugin/latest/setup-mojo.html#singleCloverDatabase
http://clover2setup
http://clover2setup
http://jira.codehaus.org/browse/MNG-2184

Documentation for Clover 4.0 165

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

1.
2.
3.
4.

The quickest and easiest way to try Clover is from the command line, for example:

mvn clean clover2:setup test clover2:aggregate clover2:clover

Installing Clover in pom.xml

Install Clover-for-Maven 2 and 3 by adding it to your Maven build file ():pom.xml

Set up your by adding:pom.xml

<build>
 <plugins>
 ...
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${clover.version}</version>
 <configuration>
 <licenseLocation>/path/to/clover.license</licenseLocation>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

 Either change } to the current Clover version, or define a property in your${clover.version
pom.xml that sets this value.

 Clover ships with a 30 day evaluation license. After 30 days you need a valid Clover license file to run
Clover. You can obtain a free 30 day evaluation license or purchase a commercial license at http://my.atla

. You will need to , as a element in your cossian.com set up your licence <licenseLocation> pom.xml
nfiguration file.

Now, simply on the command line.invoke Clover with Maven

mvn clean clover2:setup test clover2:aggregate clover2:clover

This will instrument your sources, build your project, run your tests and create a Clover coverage report in
the directory.target/site/clover

You can also have Clover run as part of your build by adding Clover's goals in pom.xml.

There are four basic parts executed when recording code coverage with Clover.

The goal will instrument your Java source files.clover2:setup
The phase is Maven 2 and 3's standard command for running a unit test phase.test
The goal is used for merging coverage data generated by multi-module projects.clover2:aggregate
The goal generates an HTML, XML, PDF or JSON report.clover2:clover

Running Goals via pom.xml

The goals described above can be executed by specifying them in your .pom.xml

pom.xml

http://creativecommons.org/licenses/by/2.5/au/
http://my.atlassian.com
http://my.atlassian.com

Documentation for Clover 4.0 166

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

To generate a Clover report when you run the goal:site

<project>
 ...
 <reporting>
 <plugins>
 ...
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 ...
 </configuration>
 </plugin>
 </plugins>
 </reporting>
...

To instrument your sources whenever you build:

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 ...
 </configuration>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>instrument</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

To include aggregation of child modules:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 167

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<project>
...
 <build>
 <plugins>
 <plugin>
 ...
 <executions>
 <execution>
 <id>main</id>
 <phase>verify</phase>
 <goals>
 <goal>instrument</goal>
 <goal>aggregate</goal>
 </goals>
 </execution>
 <execution>
 <id>site</id>
 <phase>pre-site</phase>
 <goals>
 <goal>instrument</goal>
 <goal>aggregate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
...

Using clover2:setup and clover:instrument

Configuring instrumentation

Controlling which source files are instrumented

Use configuration elements to exclude and include source files from being instrumented:

<configuration>
 ...
 <includes>
 <include>...ant style glob...</include>
 <include>**/specialpackage/*.java</include>
 </includes>
 <excludes>
 <exclude>**/*Dull.java</exclude>
 </excludes>
</configuration>

The Clover 'instrument' goal () can be used if you need to actually deploy a project'sclover2:instrument
artifact to production and have Clover run at the same time. This will fork the lifecycle and cause each
Clover artifact to contain the classifier. It means that the build is performed twice.-clover

The Clover 'setup' goal () performs instrumentation in the main build life cycle, thereforeclover2:setup
it's not recommended to use it together with 'install' or 'deploy' goals. The benefit of this approach is that
build is made only once. Furthermore, clover2:setup supports instrumentation of Groovy code (while
clover2:instrument does not).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 168

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding tests from instrumentation

If you don't want to instrument your test classes, add the following to your pom.xml (note that this disables the
reporting of per-test coverage as well as reporting of test results in Clover's HTML report):

<configuration>
 ...
 <includesTestSourceRoots>false</includesTestSourceRoots>
</configuration>

Controlling the level of instrumentation

You can define the level that Clover will instrument to (and the respective performance overhead). Valid values
are ' ' level (low overhead) or ' ' level (high overhead). The default setting is ' '.method statement statement

Setting this to ' ' greatly reduces the performance overhead of running Clover, however limited or nomethod
reporting is
available as a result. The typical use of the 'method' setting is:

for orTest Optimization
for projects with a large code base (as a rough estimate of coverage).

To set this value in your pom.xml:

<configuration>
 <instrumentation>method</instrumentation>
</configuration>

To set this value on the Maven command line:

-Dmaven.clover.instrumentation=method

The setting above will result in method level only instrumentation; no statement level coverage will be available.

Configuring code contexts

Clover allows you to exclude from the coverage report.coverage contexts

To exclude bodies and static initialiser blocks:try

<configuration>
 ...
 <contextFilters>try,static</contextFilters>
</configuration>

To exclude arbitrary statements or methods you can specify one or more custom contexts like so:

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts

Documentation for Clover 4.0 169

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<configuration>
 <methodContexts>
 <main>(.*)?public static void main\(String\[\] argv\).*</main>
 </methodContexts>
 <statementContexts>
 <log>System.out.println\(.*\);</log>
 <iflog>if.*\(LOG\.is.*\).*</iflog> <!-- NB: must match entire statement,
including any semicolons. -->
 </statementContexts>
</configuration>

*NB: A method context regexp must match the entire method signature. A statement context regexp must match
the full statement, including the ';'.

Each one still needs to be 'enabled' via the element:<contextFilters/>

<configuration>
 ...
 <contextFilters>main,log,iflog</contextFilters>
</configuration>

If you are filtering code from your coverage reports, you can keep track of what is filtered using the custom filt
 column. See for more information.eredElements Creating custom reports

Setting JDK Level

In most cases Clover will autodetect the JDK you are using. If you are building with a 1.5 JDK but have set the m
 and parameters to use a JDK version of 1.4 you will need to set the Cloveraven-compiler-plugin's source target

JDK level to 1.4:

<configuration>
 ...
 <jdk>1.4</jdk>
</configuration>

Setting a Clover flush policy

You can set the Clover and interval:Flush Policy

<configuration>
 ...
 <flushPolicy>threaded</flushPolicy>
 <flushInterval>5000</flushInterval>
</configuration>

Setting the Clover DB location

To specify a particular location for your Clover database:

<configuration>
 ...
 <cloverDatabase>/foo/bar</cloverDatabase>
</configuration>

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Clover-for-Maven+2+User%27s+Guide#Clover-for-Maven2User%27sGuide-CreatingCustomReports
http://maven.apache.org/plugins/maven-compiler-plugin/
http://maven.apache.org/plugins/maven-compiler-plugin/
http://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.html#source
http://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.html#target
http://confluence.atlassian.com/display/CLOVER/Using+a+Flush+Policy

Documentation for Clover 4.0 170

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

and to set a location for the merged database:

<configuration>
 ...
 <cloverMergeDatabase>/foo/bar</cloverMergeDatabase>
</configuration>

Do not set these locations explicitly (using absolute path) if you have a multi-module project.

Configuring reports

Choosing Report Formats

The goal generates an HTML and an XML report by default. You can use the , clover2:clover generateHtml
, and configuration elements to choose which report formats should begeneratePdf generateXml generateJson

produced:

<configuration>
 ...
 <generatePdf>true</generatePdf>
 <generateXml>true</generateXml>
 <generateHtml>false</generateHtml>
 <generateJson>false</generateJson>
</configuration>

 You may need to run clover2:aggregate or clover2:merge goals before running clover2:clover.

Getting Information about your Clover Database

The goal will summarize your Clover database.clover2:log

Generating Historical Reports

To include the generation of in your Clover reports, add the element tohistorical reports generateHistorical
your Clover plugin configuration:

<configuration>
 ...
 <generateHistorical>true</generateHistorical>
</configuration>

That will include your historical savepoints, if any, in the generated report.

To generate a savepoint, run the goal.clover2:save-history

To avoid having remove your savepoints you should set the location of the history directory, whichmvn clean
defaults to :$project.build.directory/clover/history

<configuration>
 ...
 <historyDir>${user.home}/history/${project.artifact}</historyDir>
</configuration>

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#generateHtml
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#generatePdf
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#generateXml
https://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#generateJson
http://docs.atlassian.com/maven-clover2-plugin/latest/log-mojo.html
http://confluence.atlassian.com/display/CLOVER/%27Historical%27+Report
http://docs.atlassian.com/maven-clover2-plugin/latest/save-history-mojo.html

Documentation for Clover 4.0 171

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Creating Custom Reports

It is possible to define an external clover report descriptor file, the same way one can define a site.xml descriptor
file. The descriptor file is basically a stripped down Ant file which will be run to produce the reports. All options
available in can be specified. The default report descriptor used by the maven-clover2-plugin is:clover-report

<project name="Clover Report" default="current">

 <clover-format id="clover.format" type="${type}" orderBy="${orderBy}"
filter="${filter}"/>
 <clover-setup initString="${cloverdb}"/>

 <clover-columns id="clover.columns">
 <totalChildren/>
 <avgMethodComplexity/>
 <uncoveredElements format="raw"/>
 <totalPercentageCovered format="longbar"/>
 </clover-columns>

 <target name="historical">
 <clover-report>
 <current outfile="${output}" summary="${summary}">
 <format refid="clover.format"/>
 <testsources dir="${tests}"/>
 <columns refid="clover.columns"/>
 </current>
 <historical outfile="${historyout}" historydir="${history}">
 <format refid="clover.format"/>
 <columns refid="clover.columns"/>
 </historical>
 </clover-report>
 </target>

 <target name="current">
 <clover-report>
 <current outfile="${output}" title="${title}" summary="${summary}">
 <format refid="clover.format"/>
 <testsources dir="${tests}"/>
 <columns refid="clover.columns"/>
 </current>
 </clover-report>
 </target>

</project>

This is a very simple Ant file, which defines two known targets: "historical" and "current" .
If there are no history points saved (via:) then only the "current" target will be called.clover2:save-history
Otherwise, the "historical" target gets called which generates both a historical and current report which are linked
together.

To change Clover's default reporting behavior, it is easiest to copy this file and add the changes you require. For
a full list of clover-report elements and attributes, please consult the documentation.clover-report

This file can be stored either on your local file system, or in your maven repository as a classified artifact.

If stored on the file system, set this system property:

-Dmaven.clover.reportDescriptor=/path/to/clover-report.xml

or specify this element:

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/docs.atlassian.com/maven-clover2-plugin/latest/save-history-mojo.html

Documentation for Clover 4.0 172

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<reportDescriptor>/path/to/clover-report.xml</reportDescriptor>

in the element for the maven-clover2-plugin in your .<configuration> pom.xml

If you wish to keep this descriptor in your maven repository you must specify this system property:

-Dmaven.clover.resolveReportDescriptor=true

or set this element:

<resolveReportDescriptor>true</resolveReportDescriptor>

in the element for the maven-clover2-plugin in your .<configuration> pom.xml
The descriptor should be deployed using the "clover-report" classifier. For example:

mvn deploy:deploy-file -DgroupId=my.group.id -DartifactId=my-artifact-id
-Dversion=X.X -Dclassifier=clover-report \
 -Dpackaging=xml -Dfile=/path/to/file -Durl=[url] -DrepositoryId=[id]

Properties for Custom Reports

Standard Maven properties

A custom clover report descriptor can access the standard Maven 2 and 3 properties. The following properties
are available:

project.url
project.version
project.name
project.description
project.id
project.groupId
project.inceptionYear

In addition to these properties, any additional properties defined in will also be available.pom.xml

Clover configuration properties

Configuration options defined for MOJO are available in report descriptor under following names: clover2:clover

${cloverdb} = full path to Clover database, depending on settings:
default database location (<build directory>/clover/clover.db) or

clover.cloverDatabasemaven. or
clover.cloverMergeDatabasemaven.

${output} = full path to report directory or file:
absolute path of (HTML/JSON reports) orclover.outputDirectorymaven.

outputDirectorymaven.clover. + "/clover.pdf" (PDF report) or
outputDirectorymaven.clover. + "/clover.xml" (XML report)

${history} = maven. historyDirclover.
${title} = report title, one of:

titlemaven.clover. or
project's artifactId + version
in case when is set then the "(Aggregated)" word is appendedmaven.clover.cloverMergeDatabase

${titleAnchor} = clover.maven. titleAnchor
${projectDir} = project base dir
${testPattern} = "**/src/test/**"

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 173

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

${filter} = maven.clover.contextFilters
${orderBy} = maven.clover.orderBy
${charset} = maven.clover.charset
${type} = html / pdf / xml / json

depends on / / / maven.clover.generateHtml maven.clover.generatePdf maven.clover.generateXml
maven.clover.generateJson
custom report will be run for each of types enabled

${reportStyle} = style of the report ("adg" / "classic") - since Clover 4.0
${span} = maven.clover.span
${alwaysReport} = maven.clover.alwaysReport
${summary} = whether to generate a summary, true for PDF report
${historyout} = location of history report

${output} for HTML
${output}/historical.pdf for PDF

Creating custom reports

It is possible to define an external clover report descriptor file, the same way one can define a site.xml descriptor
file. The descriptor file is basically a stripped down Ant file which will be run to produce the reports. All options
available in can be specified. The default report descriptor used by the maven-clover2-plugin is:clover-report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 174

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<project name="Clover Report" default="current">

 <clover-format id="clover.format" type="${type}" orderBy="${orderBy}"
filter="${filter}"/>
 <clover-setup initString="${cloverdb}"/>

 <clover-columns id="clover.columns">
 <totalChildren/>
 <avgMethodComplexity/>
 <uncoveredElements format="raw"/>
 <totalPercentageCovered format="longbar"/>
 </clover-columns>

 <target name="historical">
 <clover-report>
 <current outfile="${output}" summary="${summary}">
 <format refid="clover.format"/>
 <testsources dir="${tests}"/>
 <columns refid="clover.columns"/>
 </current>
 <historical outfile="${historyout}" historydir="${history}">
 <format refid="clover.format"/>
 <columns refid="clover.columns"/>
 </historical>
 </clover-report>
 </target>

 <target name="current">
 <clover-report>
 <current outfile="${output}" title="${title}" summary="${summary}">
 <format refid="clover.format"/>
 <testsources dir="${tests}"/>
 <columns refid="clover.columns"/>
 </current>
 </clover-report>
 </target>

</project>

This is a very simple Ant file, which defines two known targets: "historical" and "current" .
If there are no history points saved (via:) then only the "current" target will be called.clover2:save-history
Otherwise, the "historical" target gets called which generates both a historical and current report which are linked
together.

To change Clover's default reporting behavior, it is easiest to copy this file and add the changes you require. For
a full list of clover-report elements and attributes, please consult the documentation.clover-report

This file can be stored either on your local file system, or in your maven repository as a classified artifact.

If stored on the file system, set this system property:

-Dmaven.clover.reportDescriptor=/path/to/clover-report.xml

or specify this element:

<reportDescriptor>/path/to/clover-report.xml</reportDescriptor>

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/docs.atlassian.com/maven-clover2-plugin/latest/save-history-mojo.html

Documentation for Clover 4.0 175

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

in the element for the maven-clover2-plugin in your .<configuration> pom.xml

If you wish to keep this descriptor in your maven repository you must specify this system property:

-Dmaven.clover.resolveReportDescriptor=true

or set this element:

<resolveReportDescriptor>true</resolveReportDescriptor>

in the element for the maven-clover2-plugin in your .<configuration> pom.xml
The descriptor should be deployed using the "clover-report" classifier. For example:

mvn deploy:deploy-file -DgroupId=my.group.id -DartifactId=my-artifact-id
-Dversion=X.X -Dclassifier=clover-report \
 -Dpackaging=xml -Dfile=/path/to/file -Durl=[url] -DrepositoryId=[id]

Properties for Custom Reports

Standard Maven properties

A custom clover report descriptor can access the standard Maven 2 and 3 properties. The following properties
are available:

project.url
project.version
project.name
project.description
project.id
project.groupId
project.inceptionYear

In addition to these properties, any additional properties defined in will also be available.pom.xml

Clover configuration properties

Configuration options defined for MOJO are available in report descriptor under following names: clover2:clover

${cloverdb} = full path to Clover database, depending on settings:
default database location (<build directory>/clover/clover.db) or

clover.cloverDatabasemaven. or
clover.cloverMergeDatabasemaven.

${output} = full path to report directory or file:
absolute path of (HTML/JSON reports) orclover.outputDirectorymaven.

outputDirectorymaven.clover. + "/clover.pdf" (PDF report) or
outputDirectorymaven.clover. + "/clover.xml" (XML report)

${history} = maven. historyDirclover.
${title} = report title, one of:

titlemaven.clover. or
project's artifactId + version
in case when is set then the "(Aggregated)" word is appendedmaven.clover.cloverMergeDatabase

${titleAnchor} = clover.maven. titleAnchor
${projectDir} = project base dir
${testPattern} = "**/src/test/**"
${filter} = maven.clover.contextFilters
${orderBy} = maven.clover.orderBy
${charset} = maven.clover.charset
${type} = html / pdf / xml / json

depends on / / / maven.clover.generateHtml maven.clover.generatePdf maven.clover.generateXml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 176

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

maven.clover.generateJson
custom report will be run for each of types enabled

${reportStyle} = style of the report ("adg" / "classic") - since Clover 4.0
${span} = maven.clover.span
${alwaysReport} = maven.clover.alwaysReport
${summary} = whether to generate a summary, true for PDF report
${historyout} = location of history report

${output} for HTML
${output}/historical.pdf for PDF

Configuring a coverage goal

Setting coverage threshold as a quality gate

You can check that your test coverage has reached a certain threshold, and fail the build if it has not by adding a
 tag to your plugin configuration in :targetPercentage pom.xml

<configuration>
 ...
 <targetPercentage>75%</targetPercentage>
 ...
</configuration>

You can then use the target to examine the Clover database and check that you have reached theclover2:check
coverage threshold.

If you want the build to succeed anyway (printing a warning to your log), use the command line option -DfailO
.nViolation=false

Ratcheting Up Coverage

Clover can be configured to fail the build or warn you when the code coverage for a project drops relative to the
previous build.

The steps to configure the maven-clover2-plugin to do this are as follows:

specify the configuration for clover2:historyDir clover2:check
save a history point using the goal at report time. This will be used by theclover2:save-history
subsequent build.

You can also optionally specify a parameter which is the leeway used by whenhistoryThreshold clover2:check
comparing the coverage with the previous build.

Using Test Optimization in Maven

Follow the steps in this document to set up Clover's Test Optimization, which allows targeted testing of only the
code which has changed since the last build.

This page contains the basic steps for adding Clover's Test Optimization to an existing Maven configuration.

Command-line Quick Start

The quickest possible way to start using Test Optimization in Clover-for-Maven 2 and 3 is to run the following
command:

WARNING: Clover's build optimization in Maven runs in the default build lifecycle - not the forked Clover
lifecycle. Please pay attention not to deploy clovered artifacts to your repository. Test Optimization is
only recommended for saving time during development - not production deployment.

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/check-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/check-mojo.html#historyDir
http://clover2check
http://docs.atlassian.com/maven-clover2-plugin/latest/save-history-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/check-mojo.html#historyThreshold
http://clover2check

Documentation for Clover 4.0 177

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

mvn clover2:setup clover2:optimize test clover2:snapshot

By default, the snapshot file gets saved to ${basedir}/. . It can be deleted byclover/clover.snapshot
running the goal. You can also specify an alternative location using clover2:clean -Dmaven.clover.snaphos

 This file is needed to optimize subsequent builds, so please ensure that itt=/path/to/clover.snapshot.
won't be removed between builds (don't keep it in a /target directory, for instance).

For further documentation on these goals, see the Maven site docs:

clover2:clean
clover2:setup
clover2:optimize
clover2:snapshot

Alternatively, add the following profile to the profiles element in your .pom.xml

Editing pom.xml for Test Optimization

To enable Clover's test optimization functionality, add the following profile to the profiles element in your pom.x
:ml

<profiles>
 <profile>
 <id>clover.optimize</id>
 <build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>4.0.0</version>
 <executions>
 <execution>
 <goals>
 <goal>setup</goal>
 <goal>optimize</goal>
 <goal>snapshot</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

This will then make it possible to run the following command:

mvn integration-test -Pclover.optimize

Test Optimization In-Action

The first time Clover Test Optimization is used a full test run will be done. You should see the following log
message appear in the maven stdout:

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/clean-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/clean-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/setup-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/optimize-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/snapshot-mojo.html

Documentation for Clover 4.0 178

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If you then rerun the build, without modifying any source files (and ensuring the snapshot file is not deleted) you
should see the following:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 179

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If a source file is modified in any way (including whitespace changes), and you re-run the build, only TestCases
that cover the modified file will be run, for instance:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 180

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

By default, the same snapshot file is updated for 10 consecutive builds. On the 10th build, the snapshot file is
deleted and recreated. You can adjust this setting via the option on the clover2:optimize goal.fullRunEvery

TIP: If your terminal supports ANSI escape sequences (OS X, Linux by default), supply the -Dansi.color=tr
 property on the command line to have your build optimization in full color.ue

Related Links

Overview of Test Optimization

Test Optimization Technical Details

Test Optimization Quick Start for Ant

Clover for Maven 2 and 3 - Test Optimization Best Practices

Using Distributed Per-test Coverage

Using Distributed Per-test Coverage

This page contains instructions on how to collect per-test coverage from a set of functional tests, which run in
multiple JVMs (Java Virtual Machines). This may be necessary when starting a web server with the Maven

 or the , for example.Cargo plugin Tomcat plugin

On this page:

Option 1. Enabling Distributed Coverage at Runtime
Setting a System Property in the Maven Cargo plugin
Setting a System Property in the Maven Surefire plugin

Option 2. Activate Distributed Coverage during Instrumentation.
Step 1: Activate the Distributed Coverage Feature
Step 2: Specify the JVM running the Tests as the Server

Execution
Related Links

To set up collection of per-test coverage from distributed builds, carry out the following steps.

Option 1. Enabling Distributed Coverage at Runtime

It is recommended, but not necessary, to enable distributed coverage collection at runtime. This can be done by
defining the system property in all JVMs running Clovered code, includingclover.distributed.coverage
your Surefire JVM, and the JVM running your web server.

For the following examples, we are using the to start the webserver and the Maven Cargo plugin Maven Surefire

Why measure per-test coverage?
Clover's per-test coverage data gives you unique insight into how each of your tests exercises the
codebase. Clover's per-test reporting gives statement level detail about the behaviour of each test.
Furthermore, once you've measured per-test coverage, you can use Clover's powerful new test

 feature, where Clover can choose a smart subset of tests to run for a given code change,optimization
saving you the time and hassle of running a full test suite for every change.

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/optimize-mojo.html#fullRunEvery
http://www.atlassian.com/software/clover/features/optimization.jsp
http://cargo.codehaus.org/Maven2+plugin
http://cargo.codehaus.org/Maven2+plugin
http://mojo.codehaus.org/tomcat-maven-plugin/
http://cargo.codehaus.org/Maven2+plugin
http://maven.apache.org/plugins/maven-surefire-plugin/

Documentation for Clover 4.0 181

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 to run the tests.plugin

Setting a System Property in the Maven Cargo plugin

The " " System Property must be set to "ON" in the Maven Cargo Pluginclover.distributed.coverage
configuration.

<systemProperties>
 <clover.distributed.coverage>ON</clover.distributed.coverage>
</systemProperties>

 TIP: the takes default settings (host=localhost, port=1198, timeout=5000ms,clover.distributed.coverage=ON
numClients=0, retryPeriod=1000ms, name=clover.tcp.server). In case when you cannot use default settings, you
can pass specific value for any of attributes using the "key=value" syntax passed as clover.distributed.coverage
value:

host - host name of the "Clover Server"
port - port on which the Clover will listen
numClients - number of "Clover Clients" to connect until server starts test execution
timeout - connection timeout in miliseconds
retryPeriod - inverval between connection retries in miliseconds
name - name of the configuration (URL is)host:port/name

Example:

<systemProperties>

<clover.distributed.coverage>host=myhost;port=7777;numclients=2</clover.distributed
.coverage>
</systemProperties>

Setting a System Property in the Maven Surefire plugin

The following System properties must be set in the Maven Surefire Plugin configuration:

" " System Property must be set to "ON",clover.distributed.coverage
" " System Property must be set to "true".clover.server

<configuration>
 <forkMode>once</forkMode>
 <systemProperties>
 <property>
 <name>clover.server</name>
 <value>true</value>
 </property>
 <property>
 <name>clover.distributed.coverage</name>
 <value>ON</value>
 </property>
 </systemProperties>
</configuration>

http://creativecommons.org/licenses/by/2.5/au/
http://maven.apache.org/plugins/maven-surefire-plugin/

Documentation for Clover 4.0 182

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Option 2. Activate Distributed Coverage during Instrumentation.

Step 1: Activate the Distributed Coverage Feature

To add the element to the configuration section, apply<distributedCoverage/> maven-clover2-plugin
the following code:

<configuration>
 <distributedCoverage/>
</configuration>

This will enable distributed per-test coverage to be collected. Clover running in the JVM that hosts the tests will
start a TCP server to do so. By default, it listens on .localhost:1198

The element takes the following nested elements:<distributedCoverage>

Element
name

Description Required

host The hostname the test JVM should bind to. No; defaults to 'loc
'alhost

name The name of this configuration. No; defaults to 'tcp
'-config

numClients The number of clients that need to connect to the test server before the
tests will continue.

No; defaults to ' '0

port The port the test JVM should listen on. No; defaults to '119
'8

retryPeriod The amount of time (in milliseconds) to wait before attempting to
reconnect in the event of a network failure.

No; defaults to '100
'0

timeout The amount of time (in milliseconds) to wait before a connection attempt
will fail.

No; defaults to '500
'0

 All attributes are optional.

Step 2: Specify the JVM running the Tests as the Server

Add the system property to the configuration section, and ensureclover.server maven-surefire-plugin
the forkMode parameter is set to 'once':

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <forkMode>once</forkMode>
 <systemProperties>
 <property>
 <name>clover.server</name>
 <value>true</value>
 </property>
 </systemProperties>
 </configuration>
</plugin>

Execution

 In order to run your tests and generate reports, you might need to copy Clover database (clover.db) and

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 183

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

coverage recordings (clover.dbHHHHHHH_TTTTTTTTTT) between machines. You might also need to provide
clover.jar at runtime. It depends on how your environment is configured and especially whether Clover database
is accessible via shared network drive. Read the .Using Clover in various environment configurations

Related Links

Working with Distributed Applications
Using Test Optimization in Maven
Using Clover in various environment configurations

Using Clover in various environment configurations

Introduction
Scenario 1 - single-module application executed on several servers independently
Scenario 2 - multi-module application executed on several servers independently
Scenario 2b - multi-module application executed on several servers independently
Scenario 3 - multiple applications executed on several servers in isolation
Scenario 3b - multiple applications executed on several servers in partial isolation
Scenario 4 - multi-module application with distributed execution on several servers
Scenario 5 - multi-module application with history points
Decision matrix
References

Introduction

This is a "multi-multi" tutorial showing how to use Clover:

with projects containing multiple modules,
running on multiple application severs,
in multiple test phases (e.g. unit tests, integration, manual testing),
in multiple test runs (snapshots and history points)
in distributed environment

If you have questions like:

should I use cloverDatabase, singleCloverDatabase or cloverMergeDatabase?
should I declare Clover in master pom.xml or in child modules' pom.xmls as well?
should I deploy instrumented code on all application servers and run tests at once or sequentially?
what should I copy (or not copy) to test server?
should I use distributed.coverage=ON?
should I use merge clover databases?

then this tutorial is for you

Assumptions for all scenarios:

For the simplicity of the tutorial it's assumed that:

we have separated machines for build, tests and reporting
we have a shared network drive accessible from all machines at the same absolute path

In case when your environment is different and:

build, application or reporting server is the same machine => skip points talking about copying files

Confused which scenario you shall use? Have a quick look at the .Decision Matrix

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 184

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

shared network drive is accessible from all machines but at different absolute paths => instrument
sources using relative paths, use clover.initstring.basedir / clover.initstring.prefix at runtime
shared network drive is not available => copy clover.db / recording snapshots / history points between
machines

Scenario 1 - single-module application executed on several servers independently

Assumptions:

we have a single-module application (like maven project with one pom.xml or ant project with one
build.xml)
we deploy instrumented application (the same code) to several application servers
tests run independently on each application server
we're not interested in per-test coverage recording
we want to have a single report showing combined coverage from all application servers

TIP: this scenario applies also to a case when

you deploy the application on one server or
you deploy the application on one server and run multiple instances in separate JVMs or
you execute your application multiple times (for example unit tests + integration tests + manual testing)

Overview chart:

Solution approach:

1) because of fact that

we're not interested in per-test coverage AND

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 185

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

we run tests independently

there is to configure a distributed coverage feature.no need

2) because of fact that

we deploy the same code to all application servers AND
we want to have a single report showing combined coverage from all application servers

we have the same code base, so the same clover.db should be used on each application server and merging
clover databases has no sense

we should keep coverage recordings from all servers in the same location as well - note that they will not
overwrite each other, because every snapshot file has unique file name

3) because of fact that

we have a shared network drive accessible from all machines at the same absolute path

it will be very convenient to use it to store clover.db as well as recordings

we will not need to use -Dclover.initstring at runtime, because the absolute path will be hardcoded in the
instrumented code

Steps:

1) Build application with Clover

a) using Ant

Define attribute for <clover-setup> or <clover-instr> tag, e.g.:initstring

<clover-setup initstring="/path/to/network/drive/clover.db">

b) using Maven

Define property for Clover plugin in pom.xml, e.g.:<cloverDatabase>

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 </configuration>
</plugin>

mvn clean clover2:setup install

2) Deploy instrumented application to Application Servers

Copy clover.jar and your application jar/war. There's no need to copy as it's on a network drive.clover.db

3) Run tests on Application Servers

Execute your application. There is no need to provide parameter as path to database isclover.initstring clover.db
already hardcoded in instrumented sources.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 186

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

4) Generate coverage report

a) using Ant

Execute task; use pointing to on a network drive, e.g.:<clover-report> initstring clover.db

<clover-report initstring="/path/to/network/drive/clover.db">

b) using Maven

Execute goal. Note that you don't need to call as the project is notclover2:clover clover2:aggregate
multi-module. The defined in pom.xml will be used for reporting.<cloverDatabase>

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 </configuration>
</plugin>

mvn clover2:clover

Scenario 2 - multi-module application executed on several servers independently

Assumptions:

we have a multi-module project
like maven project with modules, or
ant project with several build.xml files in which <ant inheritrefs="true" inheritprops="true"> is used
(so that all properties are passed)

we deploy instrumented application (the same code) to several application servers
tests run independently on each application server
we're not interested in per-test coverage recording
we want to have a single report showing combined coverage for all modules from all application servers

Overview chart:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 187

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

In this scenario there are two approaches possible:

Approach #1: use one database for all modules

 use separate database for every module but under common rootApproach #2:

We will focus on as it's easier to manage. For Approach #2 - see chapter below.Approach #1

Solution approach:

1) because of fact that

we're not interested in per-test coverage AND
we run tests independently

there is no need to configure a distributed coverage feature.

2) because of fact that

we deploy the same code to all application servers AND
we want to have a single report showing combined coverage from all application servers

we have the same code base, so one clover.db should be used on each application server and merging of clover
databases has no sense

we should keep coverage recordings from all servers in the same location as well - note that they will not
overwrite each other, because every snapshot file has unique file name

3) because of fact that

we have a shared network drive accessible from all machines at the same absolute path
we use single clover database for all modules

we will not need to use -Dclover.initstring at runtime, because the absolute path will be hardcoded in the
instrumented code

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 188

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Steps:

1) Build application with Clover

a) using Ant

<target name="all">
 <!-- Enable clover for top level module -->
 <clover-setup initstring="/path/to/network/drive/clover.db">
 <!-- Build sub-modules ensuring that properties are passed -->
 <ant inheritrefs="true" inheritprops="true" file="sub-module-a/build.xml"
target="all"/>
 <ant inheritrefs="true" inheritprops="true" file="sub-module-b/build.xml"
target="all"/>
</target>

b) using Maven

define <singleCloverDatabase>true</singleCloverDatabase> in top-level pom.xml; sub-modules will
inherit this setting
define <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase> in top-level pom.xml;
do define <cloverDatabase> attribute in sub-modules, because it would override thenot
singleCloverDatabase parameter

<!-- TOP LEVEL POM.XML -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 <singleCloverDatabase>true</singleCloverDatabase>
 </configuration>
</plugin>

<!-- CHILD MODULES POM.XML -->
<!-- No need to define anything for Clover, unless you wish to have
some module-specific settings -->

2) Deploy instrumented application to Application Servers

Copy clover.jar and your application jar/war. There's no need to copy as it's on a network drive.clover.db

3) Run tests on Application Servers

Execute your application. As we have used singleCloverDatabase and cloverDatabase pointing to absolute path
on a network drive, we don't need to provide parameter.clover.initstring

4) Generate coverage report

a) using Ant

<clover-report initstring="/path/to/network/drive/clover.db">

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 189

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

b) using Maven

Execute goal. Note that you don't need to call as the project is notclover2:clover clover2:aggregate
multi-module. The defined in top-level pom.xml will be used for reporting.<cloverDatabase>

mvn clover2:clover

Scenario 2b - multi-module application executed on several servers independently

This scenario is the same as Scenario 2, but we use separate clover.db database for every module all ofand
them are stored under common root.

Steps:

1) Build application with Clover

a) using Ant

This approach is generally not applicable for ant scripts.

b) using Maven

Don't define <cloverDatabase> and <singleCloverDatabase> so that default values will be used (relative path tar
 and).get/clover/clover.db false

2) Deploy instrumented application to Application Servers

No differences.

3) Run tests on Application Servers

Provide at runtime. Alternatively: use .clover.initstring.basedir=/path/to/top-level-module/dir clover.initstring.prefix

4) Generate coverage report

Before generating report you have to merge all databases. For example:

a) using Ant

<clover-merge initstring="/path/to/mergedClover.db">
 <cloverDb initstring="/path/to/network/drive/moduleA/clover.db"/>
 <cloverDb initstring="/path/to/network/drive/moduleB/clover.db"/>
</clover-merge>
<clover-report initstring="/path/to/mergedClover.db"/>

b) using Maven

<!-- Top-level pom.xml -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>

<cloverMergeDatabase>/path/to/network/drive/cloverMerged.db</cloverMergeDatabase>
 </configuration>
</plugin>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 190

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

mvn clover2:aggregate clover2:clover

Scenario 3 - multiple applications executed on several servers in isolation

Assumptions:

we have multiple applications (each of them can have one or more modules)
every application has separate code base (i.e. no shared source files)
every application is built and instrumented separately (i.e. separate clover.db for every app)

we deploy instrumented applications to several application servers
every application runs on it's own server (i.e. no case when two apps runs in the same JVM)

tests run independently on each application server and for each application
we're not interested in per-test coverage recording
we want to have a single report showing combined coverage for all modules of all applications from all
application servers

Overview chart:

Solution approach:

1) because of fact that

we're not interested in per-test coverage AND
we run tests independently

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 191

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

there is no need to configure a distributed coverage feature.

2) because of fact that

every application has separate code base AND
every application is built and instrumented separately AND
we want to have a single report showing combined coverage from all application servers

it implies that

different clover.db files should be used (one for each application on every application server where
application runs)
merging of clover databases is necessary after tests
we should keep coverage recordings from all servers in separate locations - one location for every
clover.db file

3) because of fact that

we have a shared network drive accessible from all machines at the same absolute path
every application runs on it's own server

we will not need to use -Dclover.initstring at runtime, because the absolute path will be hardcoded in the
instrumented code

Steps:

 1) Build application with Clover

a) using Ant

Define attribute for <clover-setup> or <clover-instr> tag, which will point to different directory for everyinitstring
application ,e.g.:

<!-- App1 build.xml -->
<clover-setup initstring="/path/to/network/drive/app1/clover.db">

<!-- App2 build.xml -->
<clover-setup initstring="/path/to/network/drive/app2/clover.db">

b) using Maven

Define property for Clover plugin in pom.xml. You can use singleCloverDatabase in case your<cloverDatabase>
application is multi-module. Databases for all applications be stored under common root (it's a limitation ofmust
clover2:merge goal; Ant clover-merge task is more flexible regarding paths). Example:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 192

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<!-- App1 pom.xml -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>

<cloverDatabase>/path/to/network/drive/common-root/app1/clover.db</cloverDatabase>
 </configuration>
</plugin>

<!-- App2 pom.xml -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>

<cloverDatabase>/path/to/network/drive/common-root/app2/clover.db</cloverDatabase>
 <singleCloverDatabase>true</singleCloverDatabase> <!-- assuming that app2
is multi-module -->
 </configuration>
</plugin>

mvn clean clover2:setup install

2) Deploy instrumented application to Application Servers

Copy clover.jar and your application jar/war to proper machines. There's no need to copy as it's on aclover.db
network drive.

3) Run tests on Application Servers

Execute your applications. As every application runs in their own JVM and due to fact that we have used
cloverDatabase (and optionally singleCloverDatabase) pointing to absolute path on a network drive, we don't
need to provide parameter at runtime, because correct path is hardcoded in instrumentedclover.initstring
classes.

4) Generate coverage report

Before generating report you have to merge all databases. for example:

a) using Ant

<clover-merge initstring="/path/to/network/drive/cloverMerged.db">
 <cloverDb initstring="/path/to/network/drive/app1/clover.db"/>
 <cloverDb initstring="/path/to/network/drive/app2/clover.db"/>
</clover-merge>
<clover-report initstring="/path/to/cloverMerged.db"/>

b) using Maven

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 193

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<!-- Top-level pom.xml -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>

<cloverMergeDatabase>/path/to/network/drive/cloverMerged.db</cloverMergeDatabase>
<!-- output database -->
 <baseDir>/path/to/network/drive/common-root</baseDir> <!-- common root -->
 <includes>*.db</includes> <!-- filename pattern, separated by comma or
space -->
 </configuration>
</plugin>

mvn clover2:aggregate # run it for multi-module applications
mvn clover2:merge clover2:clover # run it for final report

Scenario 3b - multiple applications executed on several servers in partial isolation

This scenario is a variation of Scenario 3 in such way, that:

location of clover.db(s) on test server is different than on build server (so you have to provide/change inits
 at runtime)tring

some applications are executed in the same JVM (as a consequence, you cannot pass asclover.initstring
JVM argument, because you need a different value for each application).

In such case, you have to:

instrument these applications using relative paths in <cloverDatabase> parameter (Maven) or
<clover-setup initstring=""> (Ant), like below:

app1/clover.db
app2/clover.db
app2/moduleA/clover.db
app2/moduleB/clover.db

copy generated clover.db(s) to test server, keeping their relative paths (under a common root), for
instance:

/path/to/common-root/app1/clover.db
/path/to/common-root/app2/clover.db
/path/to/common-root/app2/moduleA/clover.db
/path/to/common-root/app2/moduleB/clover.db

provide at runtimeclover.iniststring.basedir=/path/to/common-root

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 194

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Scenario 4 - multi-module application with distributed execution on several servers

Assumptions:

we have a multi-module project (like Maven project with modules, or Ant project with several build.xml
files with inheriting properties across ant calls)
we deploy instrumented application (the same code) to several application servers
unit tests are executed on one machine, but these unit tests call business logic on one or<<server>>
more machines<<client>>
we are interested in per-test coverage recording, showing combined coverage from distributed execution
we want to have a single report showing combined coverage for all modules from all application servers

Overview chart:

Solution approach:

1) because of fact that

we are interested in per-test coverage AND
we run tests on several machines in parallel (so that a single test case is executed on several nodes)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 195

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

it implies that

we must configure a distributed coverage feature
we must designate a single machine which will be our host of unit tests - see <<server>> on a diagram
we must open network ports so that <<client>> machines will be able to connect to <<server>> on a
designated port number
we must decide how to launch <<server>> and <<clients>>, for example whether server should hold with
test execution until clients are ready

2) because of fact that

we deploy the same code to all application servers

we don't have to merge clover databases as the same database should be used on each application server

3) because of fact that

we have a shared network drive accessible from all machines at the same absolute path

we will not need to use at runtime, because the absolute path will be hardcoded in theclover.initstring
instrumented code

Steps:

1) Build application with Clover

define how many clients will connect to JVM running unit tests;

 a number greater than 0 means that server will hold until all clients are connected before it
continues execution; number equal 0 means that tests will start immediately

 you might have a dependency loop so that server waits for clients and clients wait for server - see
below

define server host name (default is localhost) and listening port (default is 1198)
optionally define connection timeout (in miliseconds), retry period

a) using Ant

<clover-setup initstring="/path/to/network/drive/clover.db">
 <distributedCoverage host="my.server.com" port="1234" numClients="2"
timeout="10000"/>
</clover-setup>

b) using Maven

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 196

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 <singleCloverDatabase>true</singleCloverDatabase> <!-- In case of
multi-module application (optional) -->
 <distributedCoverage>
 <host>my.server.com</host>
 <port>1234</port>
 <numClients>2</numClients>
 <timeout>10000</timeout>
 </distributedCoverage>
 </configuration>
</plugin>

2) Deploy instrumented application to Application Servers

Copy clover.jar and your application jar/war to proper machines. There's no need to copy as it's on aclover.db
network drive.

3) Run tests on Application Servers

On <<server>> machine

java ... -Dclover.server=true

On <<client>> machines

You don't have to provide any runtime options for JVM. They're already compiled in the code.

Potential problems

Server does not wait for clients, despite having numClients != 0 in build configuration
Do not use runtime option if numClients!=0 was set in-Dclover.distributed.coverage=ON
instrumentation. The provided at runtime will override settingclover.distributed.coverage numClients
from instrumentation, setting it to 0. As a consequence your tests on server will start immediately,
without waiting for clients to connect. It can result in lower or zero coverage.

Instead of this:

enable distributed coverage option in build file or
use -Dclover.distributed.coverage=numClients=N (where N is a number >= 0) at runtime

Execution of tests hangs when with numClients != 0
It can happen that your server will wait for clients to connect, while clients will wait until server starts unit
test execution. This is a typical case for web applications running in container (like Tomcat, JBoss),
when your unit test calls a servlet class (e.g. via HTTP request). The issue is as follows:

unit tests on <<server>> are waiting until all clients are connected (numClients != 0) but
none of the clients will connect until servlet class is loaded in the container, which happens only
when first request comes (and it will not come, due to point above)

See how to fix this circular dependency.Working with Distributed Applications

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 197

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

4) Generate coverage report

a) using Ant

<clover-report initstring="/path/to/network/drive/clover.db">
 <current showUniqueCoverage="true" outfile="/path/to/clover/report">
 <format type="html"/>
 <fileset dir="src"/>
 </current>
</clover-report>

b) using Maven

In order to show per-test coverage in the HTML report (), you have to use the custom showUniqueCoverage <rep
 in pom.xml and in the report descriptor set the . For example:ortDescriptor> showUniqueCoverage=true

<project name="Clover Report" default="current">
 <clover-setup initString="${cloverdb}"/>
 <target name="historical"/>
 <target name="current">
 <clover-report>
 <current showUniqueCoverage="true" outfile="${output}"> <!-- Show
per-test coverage in report -->
 <format type="html"/>
 </current>
 </clover-report>
 </target>
</project>

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 <outputDirectory>/path/to/clover/report</outputDirectory>
 <reportDescriptor>report-descriptor.xml</reportDescriptor> <!-- Use
custom report -->
 </configuration>
</plugin>

mvn clover2:clover

report-descriptor.xml

pom.xml

More information about format of report descriptor can be found here:

http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#reportDescriptor
https://confluence.atlassian.com/display/CLOVER/clover-report

 inhttps://bitbucket.org/atlassian/maven-clover2-plugin
src/main/resources/default-clover-report.xml

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#reportDescriptor
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 198

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Scenario 5 - multi-module application with history points

Assumptions:

we have a multi-module project (like Maven project with modules, or Ant project with several build.xml
files with inheriting properites across ant calls)
we deploy instrumented application to one application server
we are not interested in per-test coverage or test optimization
we want to have a single report showing combined coverage for all modules

Overview chart:

Solution approach:

1) because of fact that we're not interested in per-test coverage or test optimization, there is no need to
configure a distributed coverage feature

2) because of fact that we have one multi-module application and we want to have a single report showing
combined coverage from all modules, one clover.db should be used and there's no need to merge clover
databases

3) because of fact that we will generate reports with history,

we must keep all *.xml.gz history snapshots between builds and
we must delete clover.db and coverage files between builds

 4) because of fact that

we have a shared network drive accessible from all machines at the same absolute path
we use single clover database for all modules

we will not need to use at runtime, because the absolute path will be hard-coded in theclover.initstring

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 199

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

instrumented code.

Steps:

 1) Build application with Clover

Configuration is the same as for Scenario 2.

a) using Ant

<target name="all">
 <!-- Enable clover for top level module -->
 <clover-setup initstring="/path/to/network/drive/clover.db">
 <!-- Build sub-modules ensuring that properties are passed -->
 <ant inheritrefs="true" inheritprops="true" file="sub-module-a/build.xml"
target="all"/>
 <ant inheritrefs="true" inheritprops="true" file="sub-module-b/build.xml"
target="all"/>
</target>

b) using Maven

<!-- TOP LEVEL POM.XML -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 <singleCloverDatabase>true</singleCloverDatabase>
 </configuration>
</plugin>

<!-- CHILD MODULES POM.XML -->
<!-- No need to define anything for Clover, unless you wish to have some
module-specific settings -->

mvn clover2:setup test

2) Deploy instrumented application to Application Servers

Remove previous version of application and copy clover.jar and your application jar/war. There's no need to
copy as it's on a network drive.clover.db

3) Run tests on Application Servers

Execute your application. As we have used and pointing to absolute pathsingleCloverDatabase cloverDatabase
on a network drive, we don't need to provide parameter at runtime.clover.initstring

4) Generate coverage report

a) using Ant

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 200

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<clover-report initstring="/path/to/network/drive/clover.db">
 <current outfile="/path/to/clover/report/current" title="Coverage Report">
 <format type="html"/>
 <fileset dir="src"/>
 </current>
 <historical outfile="/path/to/clover/report/historical" title="Historical
Report" historyDir="/path/to/clover/historypoints">
 <format type="html"/>
 </historical>
</clover-report>

<clover-historypoint historyDir="/path/to/clover/historypoints">
 <fileset dir="src"/>
</clover-historypoint>

b) using Maven

<!-- Top-level pom.xml -->
<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <cloverDatabase>/path/to/network/drive/clover.db</cloverDatabase>
 <singleCloverDatabase>true</singleCloverDatabase>
 <generateHistorical>true</generateHistorical>
 <generateHtml>true</generateHtml>
 <historyDir>/path/to/clover/historypoints</historyDir>
 <outputDirectory>/path/to/clover/report</outputDirectory>
 </configuration>
</plugin>

mvn clover2:clover clover2:save-history

Decision matrix

Instrumentation of source code

Q1 How many applications do you build? (term 'application' means a separate source
code and independent build)

 one application many applications

Q2 How many modules application(s) has(have)? (term 'module' means a part of source
code, built in the same session as other parts of code)

 one module many modules one module many modules

Solution

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 201

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Recommended define cloverD
 inatabase

pom.xml

no need to
merge

define in cloverDatabase
master pom.xml

set singleCloverDatabase=
 in master pom.xmltrue

no need to merge

define cloverDa
 intabase

pom.xml

all applications'
databases must
be stored under
a common root
(for sake of
reporting via
clover2:clover)

merge
databases from
all applications
after tests
(using
clover2:merge)

define in cloverDatabase
master pom.xml

set singleCloverDatabase=
 in master pom.xmltrue

all applications' databases
must be stored under a
common root
(for sake of reporting via
clover2:clover)

merge databases from all
applications after tests
(using clover2:merge)

Alternative #1 n/a set singleCloverDatabase=
false (or don't define)

merge after tests via
clover:aggregate

n/a set singleCloverDatabase=
false (or don't define)

all applications' databases
must be stored under a
common root
(for sake of reporting via
clover2:clover)
merge after tests via
clover:aggregate +
clover2:merge

Application execution

Q3 Is directory with clover database(s) accessible at the same absolute same path on build and test server?

 yes no

Q4 Do you have many applications (i.e. you have many clover databases generated)?

 one
application

many applications one application many applications

Q5 Do you run each application in a separate JVM?

 n/a separately together n/a separately

Solution

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 202

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Recommended nothing to
do; path to
clover.db
is already
hardcoded in

instrumented
source code

instrument
source code
with
different initstri

 for everyng
app;
no need to
provide clover.
initstring
at runtime as
it's hardcoded
in
instrumented
source code

instrument code with
relative path
in for allinitstring
applications;
provide common root
in
clover.initstring.basedir
at runtime

provide
=/pclover.initstring

ath/to/clover.db
at runtime

instrument
source code
with
different initstri

 for everyng
app;
provide
different clover
.initstring
for every
application at
runtime

Environment configuration

Q6 In case you use different machines for build/test/reporting - do you have a shared network
drive?

 yes no

Q7 Do you execute the same application (i.e. binaries produced in one build and using the
same clover.db) on several machines?

 no yes no yes

Solution

 nothing to do
(clover.db created
during build
is available on test
machine too thanks
to
a network drive;
coverage recording
files
are written to the
same directory)

nothing to do (clover.db
created during build
is accessible on all test
machines too; coverage
recordings from all test
machines are written to
the same directory;
coverage files generated
on different
machines will not clash
because they're using
unique file names)

copy clover.db from build
to test server

execute tests

copy clover.db and
coverage files from test to
report server

copy clover.db
from build to test
servers

execute tests

copy clover.db
from build to report
server
copy coverage
files from all test
servers to
report server into
the same directory

Per-test coverage and test optimization vs distributed coverage

Q8 Are you interested in per-test coverage report or in test optimization?

 no yes

Q9 Do you have distributed application, so that single test case executes application logic on
several machines?

 no yes no yes

Solution

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 203

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 nothing
to do

don't set up distributed
coverage feature

just run your
application and gather

coverage recording
files from all
machines in one
common directory

don't set up distributed
coverage feature

use
showUniqueCoverage=true
for reporting

instrument code with
distributedCoverage option
(define host/port for server hosting
unit tests)

at runtime, designate one server
where unit tests are
executed and run with clover.s

 runtime propertyerver=true

see Using Distributed Per-test
Coverage

use showUniqueCoverage=true
for reporting

References

About Distributed Per-Test Coverage
Working with Distributed Applications

Using Distributed Per-test Coverage with Clover-for-Ant
Using Distributed Per-test Coverage

Using Clover for web applications
FAQ / Atlassian Answers

When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code?
No coverage being generated from WebLogic hosted instrumented EAR
Clover on J2EE: Manual Testing

Using Clover for web applications

Introduction
Flushing coverage data in application container
Providing necessary permissions in restricted security environments
Configuring distributed code coverage
Application based on the Google Web Toolkit
Running in the 'test' or 'integration-test' phase

Examples
WebApp

Introduction

This manual presents how to configure Clover in order to get code coverage for web applications - and this issue
can actually split into several problem areas:

Flushing coverage data in application container

By default, Clover dumps coverage data at JVM shutdown. In case when your application sever is never shut
down, you have to change the flush policy during instrumentation and use the "interval" or "threaded" option.
See:

clover-instr or task and theirs attributes (for Ant)clover-setup flushpolicy, flushinterval
clover2:instrument or and their , parameters (for Maven)clover2:setup flushPolicy flushInterval

Providing necessary permissions in restricted security environments

Clover requires permissions to read and write files on disk, read properties, register to JVM shutdown hook. It
can happen that your application container has security restrictions applied and you have to grant Clover
necessary permissions. See:

http://creativecommons.org/licenses/by/2.5/au/
https://answers.atlassian.com/questions/62200/no-coverage-being-generated-from-weblogic-hosted-instrumented-ear
https://answers.atlassian.com/questions/22316/clover-on-j2ee-manual-testing
http://docs.atlassian.com/maven-clover2-plugin/3.1.6/instrument-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/3.1.6/setup-mojo.html

Documentation for Clover 4.0 204

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Working with Restricted Security Environments

Configuring distributed code coverage

In case when:

your tests are being executed in a different JVM than application code called by them (for example JUnits
executed during build calls servlets deployed on Tomcat, or EJBs on JBoss) and
you're interested in (i.e. which test methods have covered which businessthe per-test coverage feature
methods) or you're interested in the test optimization feature

then your project must be configured with a option. See: distributed coverage

Working with Distributed Applications
Using Distributed Per-test Coverage with Clover-for-Ant
Using Distributed Per-test Coverage

Using Clover in various environment configurations

Application based on the Google Web Toolkit

GWT performs translation from Java to JavaScript of a client-side code. In this case Clover shall either
instrument server-side code only or GWT application shall be executed in a sandbox. See:

Using Clover with the GWT-maven plugin

Running in the 'test' or 'integration-test' phase

Depends on whether your build is running tests in 'test' and/or 'integration-test' phase as well as is using
maven-surefire-plugin and/or maven-failsafe-plugin, Clover configuration may vary a little. See:

Using with Surefire and Failsafe Plugins

Examples

WebApp

Get sources from Bitbucket: , next go to .https://bitbucket.org/atlassian/maven-clover2-plugin src/it/webapp

It' a simple web application with two servlets named MyServlet and RemoteServlet and a one JSP page. Maven
during integration test phase runs unit test which calls servlets locally (by instantiating them) or remotely (in
container).

A project build has been configured with a distributed coverage feature in such way that the "Server" (i.e. the
JVM where JUnits are launched) will wait until at least one "Client" (i.e. the JVM where business code is
executed; in our case inside a Tomcat container) connects to it. Because of fact that our servlet classes will not
be loaded by Tomcat class loader until first HTTP request comes, an extra MyServletContextListener class was
created. This class does virtually nothing, but due to fact that it's being loaded by class loader during application
deployment, the Clover initialization code bundled into this class will run and connect to "Server" on a specified
port. As soon as connection is established, "Server" will start execution of unit tests.

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 205

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Best Practices for Maven

This page contains best practices for using Clover for Maven 2 and 3.

On this page:

Test Optimization in a CI environment
Setting up a CI profile
Running the Clover goals directly

Test optimization on the desktop
Combining build optimization with site coverage reporting
Test optimization across a multi-module project
Using clover2:setup for non-forked life cycle
Cross compilation using Groovy
Colouring test optimization
Build Profiles

clover.report Profile
Clover Optimize Profile
Clover Optimize, Report, Log and Check Profile

Related Links

Test Optimization in a CI environment

There are two recommended ways to utilize Clover's test optimization in a CI ()Continuous Integration
environment, either using a Profile, or to run the goals directly.
NB. Clover Test Optimization will not work if you have added the maven-clover2-plugin to the default build

http://creativecommons.org/licenses/by/2.5/au/
http://en.wikipedia.org/wiki/Continuous_integration

Documentation for Clover 4.0 206

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

3.

4.

5.

section of the pom with an execution binding the 'instrument' goal.

Setting up a CI profile

Add a profile to the project's .'clover.optimize' pom.xml
Create a new ' ' build plan in your CI server. A 'Gateway' build plan is one that gets run beforeGateway
any others and if successful, triggers any subsequent builds.
The gateway plan should execute the phase, with the profile activated. Example:verify 'clover.optimize'

mvn verify -Pclover.optimize

If your build plan is configured to do a full clean checkout before each build — you will need to ensure the
Clover snapshot file is stored in a location that will not be removed between builds. The following
configuration added to the is one option:pom.xml

<configuration>

<snapshot>${user.home}/.clover/${groupId}-${artifactId}/clover.snapshot</snaps
hot>
</configuration>

Beware however, that this set up will instrument your source and test files and compile them to the usual
Maven output location. If you run this command:

mvn deploy -Pclover.optimize

then you will be deploying class files that have been instrumented by Clover .

Running the Clover goals directly

Add a new build plan with the following command line:

mvn clover2:setup verify clover2:snapshot

Test optimization on the desktop

Running Clover's test optimization locally is very advantageous. This is achieved using the profil'clover.optimize'
e that can be activated like so:

mvn verify -Pclover.optimize

Combining build optimization with site coverage reporting

Maven2 will merge any executions defined in the default build section of the pom, with those defined in a profile.
It is therefore recommended practice to always use two profiles — one for test optimization and one for
generating a Clover report when you generate a site. The goal forks the build lifecycleclover2:instrument
ensuring that Clover instrumented sources are kept completely separate from production sources. This also
means that your tests get run twice — which is obviously not desirable in an optimized build.

The profile is an example of a build profile to activate when running this command:' 'clover.report

mvn site -Pclover.report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 207

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Using separate profiles for site generation and Test Optimization is currently the recommended way to have both
a site and a Test Optimization Clover build configured in the same .pom.xml

Test optimization across a multi-module project

By default, Clover will generate a new and file for each module. This means,clover.db clover.snapshot
that if you have tests in module A that cover code in module B, and you modify code in module B, the tests in
module A will not be run. You can achieve the desired behaviour however, by configuring Clover to use a single

 and for the entire project:clover.db clover.snapshot

<configuration>
 <snapshot>${user.home}/.clover/atlassian-plugins-clover.snapshot</snapshot>
 <singleCloverDatabase>true</singleCloverDatabase>
</configuration>

If you have many modules, you may need to set to a value higher than the default of 10. See also fullBuildEvery
.singleCloverDatabase

Using clover2:setup for non-forked life cycle

The is designed to make integration with integration and functional tests a lot simpler than usingclover2:setup
the forked lifecycle that comes with . It also has the added advantage of not having to run yourclover2:instrument
tests twice.

Executing clover2:setup does the following:

Instruments all source and test files found in .src/main/java, src/test/java
Copies the instrumented source files to target/clover/src-instrumented,

 respectively.target/clover/src-test-instrumented
Redirects the Maven project's source and test directories to target/clover/src- ,instrumented

. Subsequent plug-ins in the build life cycle then use thesetarget/clover/src-test-instrumented
locations as the source directories.

Therefore, executing the following line will instrument all source and test files, compile the instrumented source
files, run all tests and then install the compiled and classes.instrumented

mvn clover2:setup install clover2:clover

WARNING: It is not recommended to deploy your Clover instrumented classes to an external Maven repository.

Note: clover2:setup will automatically bind itself to the 'process-sources' phase if defined in the goals list of the
plugin's executions.

Cross compilation using Groovy

If you are using cross-compilation with Groovy code, you should ensure that the maven-clover2-plugin:se
 goal runs before the GMaven Plugin's goal in your . Otherwise, youtup gmaven:generateStubs pom.xml

may end up with errors when running the Clover-for-Maven 2 plugin.

Alternatively, if you run directly from the command line, then this Clover goal will runclover2:setup mvn
before the goal and you will avoid these errors when cross-compiling Groovy code.gmaven:generateStubs

Colouring test optimization

If your terminal supports ANSI escape codes, run your Maven build with the flag. Currently a-Dansi.color
few important log messages dealing with Clover's Test Optimization will be logged in colour:

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/optimize-mojo.html#fullRunEvery
http://docs.atlassian.com/maven-clover2-plugin/latest/snapshot-mojo.html#singleCloverDatabase
http://docs.atlassian.com/maven-clover2-plugin/latest/setup-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/instrument-mojo.html

Documentation for Clover 4.0 208

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Build Profiles

The following profiles can be used directly in the pom.xml. This avoids the need to modify the ~/.m2/settings.xml
file.

clover.report Profile

<profile>
 <id>clover.report</id>
 <build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${cloverVersion}</version>
 <executions>
 <execution>
 <id>clover</id>
 <phase>verify</phase>
 <goals>
 <goal>instrument</goal>
 <goal>check</goal>
 <goal>clover</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <reporting>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${cloverVersion}</version>
 </plugin>
 </plugins>
 </reporting>
 </profile>

Clover Optimize Profile

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 209

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<profile>
 <id>clover.optimize</id>
 <build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${cloverVersion}</version>
 <configuration>

<snapshot>${user.home}/.clover/${groupId}-${artifactId}/clover.snapshot</snapshot>
 </configuration>
 <executions>
 <execution>
 <id>clover</id>
 <goals>
 <goal>setup</goal>
 <goal>optimize</goal>
 <goal>snapshot</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

Clover Optimize, Report, Log and Check Profile

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 210

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<profile>
 <id>clover.all</id>
 <build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <targetPercentage>93%</targetPercentage>

<snapshot>${user.home}/.clover/${groupId}-${artifactId}/clover.snapshot</snapshot>
 </configuration>
 <executions>
 <execution>
 <id>clover</id>
 <goals>
 <goal>setup</goal>
 <goal>optimize</goal>
 <goal>snapshot</goal>
 </goals>
 </execution>
 <execution>
 <phase>verify</phase>
 <goals>
 <goal>clover</goal>
 <goal>log</goal>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>

Related Links

Overview of Test Optimization

Test Optimization Technical Details

Test Optimization Quick Start for Ant

Test Optimization Quick Start for Maven 2 and 3

Compiling Groovy with GMaven plugin

Configuring the GMaven Plugin for Groovy Support in Maven 2 and 3

If you are using Clover-for-Maven 2 and 3 on Groovy code, you would typically need to define a elemenplugin
t for the in your file.GMaven Plugin pom.xml

As shown in the example definition below, the GMaven Plugin definition requires the Groovy dependency (groo
). However, within this dependency, you define a inside a vy-all must version of Groovy that Clover supports v
 sub-element. If you omit this element, the GMaven Plugin will default to using Groovy versionersion version

1.6.0, which is not compatible with Clover.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp
http://docs.codehaus.org/display/GMAVEN/Home

Documentation for Clover 4.0 211

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<properties>
 <groovy.version>1.8.8</groovy.version>
 <gmaven.version>1.5</gmaven.version>
</properties>
...
<plugins>
 <plugin>
 <groupId>org.codehaus.gmaven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <version>${gmaven.version}</version>
 <configuration>
 <providerSelection>1.8</providerSelection>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>
 <artifactId>gmaven-runtime-1.8</artifactId>
 <version>${gmaven.version}</version>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>${groovy.version}</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <goals>
 <goal>generateStubs</goal>
 <goal>compile</goal>
 <goal>generateTestStubs</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

Tips

Cross-compilation

If you use cross-compilation with Groovy code, please refer to the on the Cross Compilation using Groovy Best
 page.Practices for Maven

Stub generation

Use the goal for Clover instrumentation in case you have generateStubs or generateTestStubsclover2:setup
goal declared in GMaven plugin configuration.

In case you use clover2:instrument a build will fail with an error message like:

org.apache.maven.BuildFailureException: Compilation failure
... error: duplicate class: com.acme.MyClass

A reason is that GMaven will generate stubs twice and will add source root for/generated-sources/groovy-stubs
both the default build life cycle () and the Clover's forked build life cycle () resulting in/target /target/clover

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/Best+Practices+for+Maven#BestPracticesforMaven-groovycrosscompilation

Documentation for Clover 4.0 212

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

duplicated source files passed to the Maven compiler.

Setting the providerSelection

Remember to configure a providerSelection parameter. Otherwise build might fail with the following error: "org.a
pache.maven.lifecycle.LifecycleExecutionException: Unexpected node: Node[7:1,64,ANNOTATIONS]" (see stac

).koverflow

Code example

See repository, directoryhttps://bitbucket.org/atlassian/maven-clover2-plugin src/it/groovy .

Compiling Groovy with Groovy Eclipse Plugin

Compiling Groovy with Groovy Eclipse Plugin

There are several possible ways to configure Groovy Eclipse Plugin - see official http://groovy.codehaus.org/Gro
 page.ovy-Eclipse+compiler+plugin+for+Maven

Our recommendation is to use configuration similar to the following:

Source layout

keep Java in src/main/java and src/test/java
keep Groovy in src/main/groovy and src/test/groovy
do define Groovy source locations for maven-compiler-plugin directly, e.g.:not

<sourceDirectory>src/main/groovy</sourceDirectory>
<testSourceDirectory>src/test/groovy</testSourceDirectory>

instead of this use:
extensions=true for groovy-eclipse-compiler (Maven 3) or
build-helper-maven-plugin to define additional source roots (Maven 2)

Maven 3 POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.atlassian.samples</groupId>
 <artifactId>groovy-eclipse-plugin-maven3-sample</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Groovy Eclipse Plug-in Sample for Maven 3</name>

 <!-- Dependencies for test execution and runtime -->
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>1.8.6</version>
 </dependency>
 </dependencies>

Maven 3 pom.xml

http://creativecommons.org/licenses/by/2.5/au/
http://stackoverflow.com/questions/2199547/maven-compile-mixed-java-groovy-1-7-project-using-gmaven-plugin
http://stackoverflow.com/questions/2199547/maven-compile-mixed-java-groovy-1-7-project-using-gmaven-plugin
https://bitbucket.org/atlassian/maven-clover2-plugin
http://groovy.codehaus.org/Groovy-Eclipse+compiler+plugin+for+Maven
http://groovy.codehaus.org/Groovy-Eclipse+compiler+plugin+for+Maven

Documentation for Clover 4.0 213

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <!-- Bind Groovy Eclipse Compiler -->
 <compilerId>groovy-eclipse-compiler</compilerId>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 <dependencies>
 <!-- Define which Groovy version will be used for build
(default is 2.0) -->
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-batch</artifactId>
 <version>1.8.6-01</version>
 </dependency>
 <!-- Define dependency to Groovy Eclipse Compiler (as it's
referred in compilerId) -->
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.7.0-01</version>
 </dependency>
 </dependencies>
 </plugin>
 <!-- Define Groovy Eclipse Compiler again and set extensions=true.
Thanks to this, plugin will -->
 <!-- enhance default build life cycle with an extra phase which adds
additional Groovy source folders -->
 <!-- It works fine under Maven 3.x, but we've encountered problems with
Maven 2.x -->
 <plugin>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.7.0-01</version>
 <extensions>true</extensions>
 </plugin>
 <!-- Configure Clover for Maven plug-in. Please note that it's not
bound to any execution phase, -->
 <!-- so you'll have to call Clover goals from command line. -->
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>3.1.7</version>
 <configuration>
 <generateHtml>true</generateHtml>
 <historyDir>.cloverhistory</historyDir>
 </configuration>
 </plugin>
 </plugins>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 214

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 </build>

</project>

In the build log you'll find messages like:

[INFO] --- groovy-eclipse-compiler:2.7.0-01:add-groovy-build-paths
(default-add-groovy-build-paths)
@ groovy-eclipse-plugin-maven3-sample ---
[INFO] Adding /src/main/groovy to the list of source folders
[INFO] Adding /src/test/groovy to the list of test source folders

Maven 2 POM

Build life cycle extension (used by groovy-eclipse-compiler) is not supported in Maven 2.x. Therefore, you can
add source locations via build-helper-maven-plugin.

 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.atlassian.samples</groupId>
 <artifactId>groovy-eclipse-plugin-maven2-sample</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Groovy Eclipse Plug-in Sample for Maven 2</name>

 <!-- Dependencies for test execution and runtime -->
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>1.8.6</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <!-- Bind Groovy Eclipse Compiler -->
 <compilerId>groovy-eclipse-compiler</compilerId>

Maven 2 pom.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 215

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 <dependencies>
 <!-- Define which Groovy version will be used for build
(default is 2.0) -->
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-batch</artifactId>
 <version>1.8.6-01</version>
 </dependency>
 <!-- Define dependency to Groovy Eclipse Compiler (as it's
referred in compilerId) -->
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.7.0-01</version>
 </dependency>
 </dependencies>
 </plugin>
 <!-- Use Build Helper plugin which adds new source folders for Groovy,
without modifying build cycle -->
 <!-- (as groovy-eclipse-compiler extensions="true" does -->
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/main/groovy</source>
 </sources>
 </configuration>
 </execution>
 <execution>
 <id>add-test-source</id>
 <phase>generate-test-sources</phase>
 <goals>
 <goal>add-test-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/test/groovy</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <!-- Configure Clover for Maven plug-in. Please note that it's not
bound to any execution phase, -->
 <!-- so you'll have to call Clover goals from command line. -->
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>3.1.7</version>
 <configuration>
 <generateHtml>true</generateHtml>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 216

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 <historyDir>.cloverhistory</historyDir>
 </configuration>
 </plugin>
 </plugins>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 217

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 </build>

</project>

In the build log you'll find messages like:

[INFO] [build-helper:add-source {execution: add-source}]
[INFO] Source directory: c:\MyProject\src\main\groovy added.
...
[INFO] [compiler:compile {execution: default-compile}]
[INFO] Using Groovy-Eclipse compiler to compile both Java and Groovy
files

[INFO] [build-helper:add-test-source {execution: add-test-source}]
[INFO] Test Source directory: c:\MyProject\src\test\groovy added.
...
[INFO] [compiler:testCompile {execution: default-testCompile}]
[INFO] Using Groovy-Eclipse compiler to compile both Java and Groovy
files

Build Command

Run your build with Clover using a following command (Maven 2 & 3):

mvn clean clover2:setup install clover2:aggregate clover2:clover

Tips

Note that it's possible to bind Clover goals to build phases using the <executions> tag in pom.xml. See Cl
, chapter. Just ensure thatover-for-Maven 2 and 3 User's Guide "Running goals via pom.xml"

clover2:setup goal is called in the process-sources phase the latest.

Troubleshooting

Bug Warning for Clover 3.1.11 and older
Because of bug (fixed in 3.1.12) you have to keep your *.groovy files in the location forCLOV-1144 not
Java code. If you put your Groovy sources into or (and this is unfortunatelysrc/main/java src/test/java
suggested solution on official page), you will end up withGroovy-Eclipse+compiler+plugin+for+Maven
an error message like below:

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1144
http://groovy.codehaus.org/Groovy-Eclipse+compiler+plugin+for+Maven

Documentation for Clover 4.0 218

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

References

 - CLOV-1150 Clover does not instrument groovy source files, (groovy-eclipse compiler) when located in src/main/groovy
CLOSED

 - CLOV-1144 Support *.groovy files in src/main/java folder for groovy-eclipse-plugin CLOSED

Atlassian Answers: Does Clover work with the groovy-eclipse-plugin
Compiling Groovy with GMaven plugin

Using with Surefire and Failsafe Plugins

Introduction

Clover can be used to generate code coverage statistics from practically any kind of test - unit, integration,
functional, regression ... - both automatic and manual. The only thing that has to be done is to instrument source
code and run it with proper options.

The most frequent Clover usage is to run unit test with code coverage - typically the maven-surefire-plugin is
used for this purpose - and thus Clover-for-Maven was designed to cooperate with Surefire plugin "out of the
box".

In this short tutorial you will learn how to configure Clover with the Maven Failsafe Plugin, which is used for
integration tests.

Comparison of maven-surefire-plugin and maven-failsafe-plugin

 maven-surefire-plugin maven-failsafe-plugin

Main purpose unit tests integration tests

Bound to build phase test pre-integration-test

integration-test

post-integration-test

verify

Build fails in phase test verify

[INFO] BUILD FAILURE
...
[ERROR] Failed to execute goal
com.atlassian.maven.plugins:maven-clover2-plugin:3.1.7:setup (default-cli)
...
Clover has failed to instrument the source files in the
[C:\MyProject\target\clover\src-instrumented] directory
 at
org.apache.maven.lifecycle.internal.MojoExecutor.execute(MojoExecutor.java:2
17)
...
[ERROR] For more information about the errors and possible solutions, please
read the following articles:
[ERROR] [Help 1]
http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
 *** ERROR: No source files specified

 USAGE: com.cenqua.clover.CloverInstr [OPTIONS] PARAMS [FILES...]
...

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1150?src=confmacro
https://jira.atlassian.com/browse/CLOV-1144?src=confmacro
https://answers.atlassian.com/questions/80287/does-clover-work-with-the-groovy-eclipse-plugin

Documentation for Clover 4.0 219

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

a.
3.
4.
5.

a.

b.

Default wildcard pattern **/Test*.java

**/*Test.java

**/*TestCase.java

**/IT*.java

**/*IT.java

**/*ITCase.java

Default output directory ${basedir}/target/surefire-reports ${basedir}/target/failsafe-reports

Setting up Clover with maven-failsafe-plugin (only)

In order to have code coverage statistics from integration tests , you have to do the and excluding unit tests
following:

Disable Surefire plugin, e.g. by setting <skip>true</skip> option.
Enable Failsafe plugin in your build

Failsafe plugin requires a test framework provider, e.g. JUnit or TestNG - declare it.
Tell Clover to use target/failsafe-reports as report directory - use the <reportDescriptor> for this.
Tell Clover to use test case wildcard pattern for both plugins - use the <reportDescriptor> for this.
Instrument sources, execute tests and generate reports

we recommend calling clover goals from command line (as typically projects are multi-module and
we have to call clover2:aggregate)
we recommend calling "verify" target instead of "integration-test" (because when you call
"integration-test", the Failsafe plugin will not perform post-integration-test cleanup)

Content of pom.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 220

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<dependencies>
 <!-- Test framework which will be used by Failsafe plugin. Version number is
mandatory -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.7</version>
 <scope>test</scope>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <!-- Use custom report descriptor -->
 <reportDescriptor>clover-report.xml</reportDescriptor>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <!-- Disable unit tests -->
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
</build>

Content of clover-report.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 221

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

a.
3.
4.
5.

a.

b.

<project name="Clover Report" default="current">
 <!-- Initialize Clover -->
 <clover-setup initString="${cloverdb}"/>
 <target name="historical">
 <!-- Empty as we're not interested in historical reports right now -->
 </target>
 <target name="current">
 <clover-report>
 <current outfile="${output}" title="${title}">
 <format type="html"/>
 <!-- Declare naming convention in order to have test classes listed
on the "Tests" tab in HTML report -->
 <testsources dir="src/test">
 <!-- Use Maven-Failsafe-Plugin naming convention -->
 <include name="**/IT*.java"/>
 <include name="**/*IT.java"/>
 <include name="**/*ITCase.java"/>
 <!-- Use Maven-Surefire-Pugin naming convention.
 NOTE: Although we don't run unit tests, we still want to have
them on "Tests" tab instead of "Classes" -->
 <include name="**/Test*.java"/>
 <include name="**/*Test.java"/>
 <include name="**/*TestCase.java"/>
 </testsources>
 <!-- Tell Clover to get test results from failsafe. They will be
listed on "Results" tab -->
 <testresults dir="target/failsafe-reports" includes="TEST-*.xml"/>
 </current>
 </clover-report>
 </target>
</project>

Maven command

mvn clean clover2:setup verify clover2:aggregate clover2:clover

Setting up Clover with maven-surefire-plugin and maven-failsafe-plugin (combined report)

In order to have combined coverage statistics from unit integration tests, you have to do the following: and

Set <reportsDirectory> option for both Surefire and Failsafe plugin pointing to the same location.
Enable both Surefire and Failsafe plugin in your build.

Failsafe plugin requires a test framework provider, e.g. JUnit or TestNG - declare it.
Tell Clover to use location from point 1 as report directory - use the <reportDescriptor> for this.
Tell Clover to use test case wildcard pattern for both plugins - use the <reportDescriptor> for this.
Instrument sources, execute tests and generate reports

we recommend calling clover goals from command line (as typically projects are multi-module and
we have to call clover2:aggregate)
we recommend calling "verify" target instead of "integration-test" (because when you call
"integration-test", the Failsafe plugin will not perform post-integration-test cleanup)

Content of pom.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 222

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<properties>
 <!-- A common location in which a surefire report from 'test' and failsafe
report from
 'integration-test' phase will be stored. See also the clover-report.xml file
which refers
 to this location -->

<surefire.and.failsafe.report.dir>target/test-report</surefire.and.failsafe.report.
dir>
</properties>
<dependencies>
 <!-- Test framework which will be used by Failsafe plugin. Version number is
mandatory -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.7</version>
 <scope>test</scope>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <!-- Use custom report descriptor -->
 <reportDescriptor>clover-report.xml</reportDescriptor>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

<reportsDirectory>${surefire.and.failsafe.report.dir}</reportsDirectory>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>

<reportsDirectory>${surefire.and.failsafe.report.dir}</reportsDirectory>
 </configuration>
 </plugin>
 </plugins>
</build>

Content of clover-report.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 223

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<project name="Clover Report" default="current">
 <!-- Initialize Clover -->
 <clover-setup initString="${cloverdb}"/>
 <target name="historical">
 <!-- Empty as we're not interested in historical reports right now -->
 </target>
 <target name="current">
 <clover-report>
 <current outfile="${output}" title="${title}">
 <format type="html"/>
 <!-- Declare naming convention in order to have test classes listed
on the "Test" tab in HTML report -->
 <testsources dir="src/test">
 <!-- Use Maven-Failsafe-Plugin naming convention -->
 <include name="**/IT*.java"/>
 <include name="**/*IT.java"/>
 <include name="**/*ITCase.java"/>
 <!-- Use Maven-Surefire-Pugin naming convention -->
 <include name="**/Test*.java"/>
 <include name="**/*Test.java"/>
 <include name="**/*TestCase.java"/>
 </testsources>
 <!-- Tell Clover to get test results directory as defined in
pom.xml. They will be listed on "Results" tab -->
 <testresults dir="target/test-report" includes="TEST-*.xml"/>
 </current>
 </clover-report>
 </target>
</project>

Maven command

mvn clean clover2:setup verify clover2:aggregate clover2:clover

Test optimization

Test Optimization feature is available for Surefire plugin. You you have to use:

clover2:optimize goal for maven-surefire-plugin used in 'test' phase
clover2:optimizeIntegration goal for maven-surefire-plugin used in 'integration-test' phase

 Test Optimization feature for maven-failsafe-plugin is not available yet. See Hacking Clover /
 if you need a workaround. Updating optimization snapshot file

Sample project

A sample project shows usage of Surefire and Failsafe plugins together.

Checkout code from Bitbucket: https://bitbucket.org/atlassian/maven-clover2-plugin

Go to: src/it/surefire-and-failsafe-plugins

Run mvn command with goals as specified in file in this project. Use Maven 2.x or higher and Java5 orgoals.txt
higher.

References

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/latest/optimize-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/latest/optimizeIntegration-mojo.html
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 224

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

See also:

maven-surefire-plugin
maven-failsafe-plugin
clover-mojo#reportDescriptor
clover-report - Ant task reference
default-clover-report.xml - default report configuration used by clover2:clover
Unit Test Results and Per-Test Coverage

Using Clover with the GWT-maven plugin

For developers working with the Google Web Toolkit (GWT) software development kit and Clover for Maven 2,
the maven-clover2-plugin works best with the .gwt-maven-plugin

The maven-googlewebtoolkit2-plugin has known issues that can cause the build to fail if you are building with
Clover. As such, the is recommended.gwt-maven-plugin

For further background reading on the gwt-maven-plugin and interoperability with the maven-clover2-plugin,
please also read this .Google Groups discussion

Instrumentation of source code

Because of the nature of Google Web Toolkit, which translates Java source code (client and shared parts) into a
JavaScript, which is later being executed in a web browser, instrumentation of Java sources by Clover requires
few technical tricks.

Instrumentation of server-side code only

This is a simpler case, as server-side Java sources are being complied to classes and executed directly in JVM.
Therefore the only thing which has to be set up is to enable Clover and limit instrumentation to server-side code
packages.

Test frameworks

The gwt-maven-plugin provides a JUnit-compatible GWTTestCase which allows to run unit tests using a web
browser or htmlunit.

How to configure Maven project

Add GWT Maven Plugin to and set desired test mode in <configuration> tag - for examplepom.xml
htmlunit allows headless run. Example:

http://creativecommons.org/licenses/by/2.5/au/
http://maven.apache.org/plugins/maven-surefire-plugin/
http://maven.apache.org/plugins/maven-failsafe-plugin/
http://docs.atlassian.com/maven-clover2-plugin/latest/clover-mojo.html#reportDescriptor
https://studio.plugins.atlassian.com/svn/CLMVN/trunk/src/main/resources/default-clover-report.xml
http://mojo.codehaus.org/gwt-maven-plugin/1.1-SNAPSHOT/introduction.html
http://mojo.codehaus.org/gwt-maven-plugin/1.1-SNAPSHOT/introduction.html
http://www.mail-archive.com/gwt-maven@googlegroups.com/msg00663.html

Documentation for Clover 4.0 225

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>gwt-maven-plugin</artifactId>
 <version>2.4.0</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>test</goal>
 <goal>i18n</goal>
 <goal>generateAsync</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <runTarget>GwtExample.html</runTarget>
 <hostedWebapp>${webappDirectory}</hostedWebapp>

<i18nMessagesBundle>com.atlassian.client.Messages</i18nMessagesBundle>
 <mode>htmlunit</mode>
 <htmlunit>IE7</htmlunit>
 </configuration>
</plugin>

Add Clover Plugin definition to and configure which sources should be instrumented with Cloverpom.xml
- instrument only server-side code. Example:

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${clover.version}</version>
 <configuration>
 <!-- Instrument only server part -->
 <includes>
 <include>com/atlassian/server/**</include>
 </includes>
 </configuration>
</plugin>

 Please note that includes/excludes are supported by the goal (i.e. willclover2:setup clover2:instrument
instrument all sources).

By default, the goal is bound to integration-test phase (and not test), so run maven with gwt:test integratio
 or goal. Example:n-test install

mvn clean clover2:setup install clover2:aggregate clover2:clover

Instrumentation of server, client and shared code

In this case we cannot use and goals. The reason is that it would start translation of Javagwt:compile gwt:test
client-side and shared source code to JavaScript, searching for sources of all referenced classes, including the
Clover instrumentation, which would cause a build failure.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 226

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

Test frameworks

The gwt-test-utils framework provides means to simulate GWT inside JVM, it can intercept all GWT.xyz() method
calls, prepare mocks using Mockito or EasyMock etc. The JUnit-compatible GwtTest allows to run unit tests
without a web browser.

How to configure Maven project

Add gwt-test-utils dependency to . Disable and goals in gwt-maven-plugin.pom.xml compile test
Increase memory for maven-surefire-plugin, if necessary. Example:

<dependency>
 <groupId>com.googlecode.gwt-test-utils</groupId>
 <artifactId>gwt-test-utils</artifactId>
 <version>0.38</version>
 <scope>test</scope>
</dependency>

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>gwt-maven-plugin</artifactId>
 <version>2.4.0</version>
 <executions>
 <execution>
 <goals>
 <!-- <goal>compile</goal> DISABLED -->
 <!-- <goal>test</goal> DISABLED -->
 <goal>i18n</goal>
 <goal>generateAsync</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <runTarget>GwtExample.html</runTarget>
 <hostedWebapp>${webappDirectory}</hostedWebapp>

<i18nMessagesBundle>com.atlassian.client.Messages</i18nMessagesBundle>
 <mode>htmlunit</mode>
 <htmlunit>IE7</htmlunit>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <argLine>-Xmx512M -XX:MaxPermSize=128M</argLine>
 </configuration>
</plugin>

Add Clover Plugin definition to . Use goal in the initialize phase in order to make sure thatpom.xml setup
source files generated by GWT will be instrumented as well. Example:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 227

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

2.

3.

1.
2.
3.

4.

5.

6.

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <executions>
 <execution>
 <id>clover-initialization</id>
 <phase>initialize</phase>
 <goals>
 <goal>setup</goal>
 </goals>
 </execution>
 <execution>
 <id>clover-reporting</id>
 <phase>install</phase>
 <goals>
 <goal>aggregate</goal>
 <goal>clover</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Run build, for example:

mvn clean install

Example project

Checkout GwtCloverExample sources from Bitbucket: https://bitbucket.org/atlassian/maven-clover2-plugin
Go to directorysrc/it/gwt
Use at least Java6 and Maven 2.x.

The project demonstrates build using three profiles:
- no Clover instrumentation default

 - only server-side code is being instrumented by Clover, integration tests arewith.clover.serveronly
performed with gwt-maven-plugin+htmlunit framework

 - all code is being instrumented by Clover, unit tests are performed withwith.clover.everything
gwt-test-utils and mocking of server services, no integration tests

Usage (see also gwt/build.bat file):

mvn clean install

mvn -Pwith.clover.serveronly clean install
mvn -Pwith.clover.everything clean install

See output reports in <project_dir>/target/site/clover

Using Clover with JAXB plugin

Steps

Add maven-clover2-plugin to <build> section

set the property to true (default is false) if you're interested in code coverage forincludesAllSourceRoots

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 228

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

JAXB generated sources
bind the goal to process-sources phase (so that it's executed after sources generation)clover2:setup
bind the goal to verify or install phase (so that report is generated after test execution)clover2:clover

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>${clover.version}</version>
 <configuration>
 <!-- Instrument all source files, also generated by JAXB. Set to false if
 you're not interested in such details (default is false) -->
 <includesAllSourceRoots>true</includesAllSourceRoots>
 </configuration>
 <executions>
 <execution>
 <!-- Call the clover2:setup after JAXB sources are generated but before
compilation -->
 <id>main1</id>
 <phase>process-sources</phase>
 <goals>
 <goal>setup</goal>
 </goals>
 </execution>
 <execution>
 <!-- Call the clover2:clover and generate report after tests are run
-->
 <id>main2</id>
 <phase>verify</phase>
 <goals>
 <goal>clover</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Add jaxb-api plugin to <dependencies> section

this is required to run unit tests

<dependencies>
 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>${jaxb.version}</version>
 </dependency>
</dependencies>

Add maven-jaxb2-plugin to <build> section

you might need to add and as plugin's dependencies (see Troubleshooting chapter)jaxb-xjc jaxb-impl
you can use extensions like property-listener-injector

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 229

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <version>0.8.1</version>
 <executions>
 <execution>
 <goals>
 <goal>generate</goal>
 </goals>
 <configuration>
 <extension>true</extension>
 <schemaLanguage>DTD</schemaLanguage>
 <schemaIncludes>
 <schemaInclude>*.dtd</schemaInclude>
 </schemaIncludes>
 <bindingIncludes>
 <bindingInclude>*.jaxb</bindingInclude>
 </bindingIncludes>
 <args>
 <arg>-Xinject-listener-code</arg>
 </args>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-xjc</artifactId>
 <version>${jaxb.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>${jaxb.version}</version>
 </dependency>
 <dependency>
 <groupId>org.jvnet.jaxb2-commons</groupId>
 <artifactId>property-listener-injector</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
</plugin>

Sample project

Checkout code from Bitbucket: https://bitbucket.org/atlassian/maven-clover2-plugin
Go to src/it/jaxb
Run mvn clean install
Generated report will be available in target/site/clover directory

Troubleshooting

Problem: Class not found - javax.activation.DataHandler with an error message like below:

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 230

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

[INFO] [jaxb2:generate {execution: default}]
[FATAL ERROR] org.jvnet.mjiip.v_2.XJC2Mojo#execute() caused a linkage
error (java.lang.NoClassDefFoundError) and may be
out-of-date. Check the realms:
[...]
[ERROR] FATAL ERROR
[INFO]
--
[INFO] javax/activation/DataHandler
[INFO]
--
[INFO] Trace
java.lang.NoClassDefFoundError: javax/activation/DataHandler
 at
com.sun.tools.xjc.model.CBuiltinLeafInfo.<clinit>(CBuiltinLeafInfo.java:
303)
 at
com.sun.tools.xjc.reader.dtd.TDTDReader.<clinit>(TDTDReader.java:442)
[...]

Solution: Define and as <dependencies> forcom.sun.xml.bind::jaxb-xjc com.sun.xml.bind::jaxb-impl
maven-jaxb2-plugin as in example chapter above.

Problem: When using the Clover Plugin together with the the JAXB2 Plugin, the build fails during
instrumentation due to an unresolved clover.jar with an error message like below:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 231

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

[ERROR] BUILD ERROR
[INFO]
--
[INFO] Error configuring:
org.jvnet.jaxb2.maven2:maven-jaxb2-plugin. Reason: Error evaluating
plugin parameter expression: project.compileClasspathElements
[INFO]
--
[INFO] Trace
 org.apache.maven.lifecycle.LifecycleExecutionException: Error
configuring: org.jvnet.jaxb2.maven2:maven-jaxb2-plugin.
Reason: Error evaluating plugin parameter expression:
project.compileClasspathElements
 at
org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Default
LifecycleExecutor.java:707)
[...]
Caused by:
org.apache.maven.artifact.DependencyResolutionRequiredException:
Attempted to access the artifact
>>>>>com.atlassian.clover:clover:jar:X.Y.Z:compile<<<<<;
which has not yet been resolved
 at
org.apache.maven.project.MavenProject.addArtifactPath(MavenProject.java:
1906)
[...]

Solution: Define a dependency to in your POM, for example:com.atlassian.clover::clover

<dependency>
 <groupId>com.atlassian.clover</groupId> <!-- note: com.cenqua.clover for 3.x
versions -->
 <artifactId>clover</artifactId>
 <version>4.0.0</version>
</dependency>

Using Clover with Maven + surefire-test + inner test classes

If you use Maven with the surefire-test plugin, its default filter setting for searching test classes is to skip inner
classes:

<excludes>
 <exclude>**/*$*</exclude>
</excludes>

In case when you have inner classes defined in your JUnit TestCases and you have configured a Surefire plugin
to run your inner classes as well, you might get an error like this:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 232

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

 Test set: TestUtils$__CLR2_6_34a4agh7gevmc

 Tests run: 2, Failures: 0, Errors: 2, Skipped: 0, Time elapsed: 0.094 sec <<<
FAILURE!
 initializationError(TestUtils$__CLR2_6_34a4agh7gevmc) Time elapsed: 0.016 sec <<<
ERROR!
 java.lang.Exception: Test class should have exactly one public constructor
 at
org.junit.runners.BlockJUnit4ClassRunner.validateOnlyOneConstructor(BlockJUnit4Cla
ssRunner.java:143)

This is because Clover generates inner class for each class (test or application code). In order to fix a problem,
you have to change your and filter out from your test scope any inner classes beginning with .pom.xml __CLR

For example:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <properties>
 <excludes>
 <exclude>**/*$__CLR*</exclude>
 </excludes>
 </properties>
 </plugin>
 </plugins>
</build>

Using Clover with the maven-bundle-plugin

This page contains instructions on how to use Clover with the maven-bundle-plugin.

The following configuration is required to ensure that the and any instrumented source files areclover.jar
ignored by the maven-bundle-plugin.

Procedure

Carry out the following steps.

Make the bundle plugin process instrument the class files correctly
Ensure the Clover artifact is not embedded in the bundle.

Example

Here, we are configuring for the maven-bundle-plugin:pom.xml

<Import-Package> <!-- Make the bundle plugin process instrumented class files
correctly -->
 com_*;resolution:=optional
</Import-Package>
<Embed-Dependency>artifactId=!clover</Embed-Dependency> <!-- Ensure the clover
artifact is not embedded in the bundle -->

Using Clover via the maven-antrun-plugin

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 233

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Any of Clover's Ant Tasks may be used directly from within Maven by using the .maven-antrun-plugin

Specifically, if you wanted to use the task to ensure that a particular package maintains a givenclover-check
coverage percentage, you could use the following configuration in Maven:

<profile>
 <id>clover.check</id>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>com.atlassian.clover</groupId>
 <artifactId>clover</artifactId>
 <version>4.0.0</version> <!-- Ensure you
use the same version as the maven-clover2-plugin -->
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>verify</phase>
 <configuration>
 <tasks>
 <property
name="clover.license.path" location="${user.home}/clover.license"/>
<!-- Change this to point to your license -->
 <taskdef
resource="cloverlib.xml" classpathref="maven.plugin.classpath"/>
 <clover-setup
initString="${project.build.directory}/clover/clover.db"/>
 <clover-check
filter="${clover.filter}" haltOnFailure="true">
 <package name="com.mypkg"
target="100%"/> <!-- Check that com.mypkg always has 100% code coverage
-->
 </clover-check>
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

Using Clover with Maven Tycho Plugin

Introduction

Unfortunately, we cannot use direct integration of Tycho plugin with Clover using standard 'clover2:setup' or
'clover2:instrument' goals. The reason is Maven Tycho Plugin ignores Maven's source folders definitions.

http://creativecommons.org/licenses/by/2.5/au/
http://maven.apache.org/plugins/maven-antrun-plugin/

Documentation for Clover 4.0 234

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Instead of this, Tycho Plugin reads source folders locations from Eclipse configuration files (like build.properties).
As a consequence it does not see files instrumented by Clover, which are stored in the dtarget/src-instrumented
irectory.

Workaround

However, we can use a following trick, which is very similar to one described in Instrumenting RCP Application /
:Approach#1 : Instrument source code manually

1) Instrument all source files manually

The idea is to replace original sources with the instrumented version, still preserving the original project
structure.

Use command line tool or Ant task or to instrument sources manuallyCloverInstr clover-instr clover2:instrument
- see script in Appendix 1.

Remember to put instrumented sources in another location, i.e. not in your original workspace.

Clover Database (clover.db) will be created during this process.

2) Build instrumented project

Build will use Maven Tycho Plugin to package everything. Because of fact that instrumented sources contain
calls of Clover classes, you must have the Clover JAR available on classpath during compilation. The easiest
way is to add dependency in the parameter of the com.atlassian.clover:clover extraClasspathElements tycho-

 in a top-level module (see Appendix).compiler-plugin

3) Run tests

Run any kind of tests - JUnit, manual ... - just to get coverage data. Coverage recordings will be stored in the
same directory where Clover Database is located.

Note that you have the Clover runtime available during execution. The best is to add it to Javamust
Xbootclasspath in order to ensure that Clover JAR is loaded before any OSGI bundle. If you are running:

unit tests via tycho-surefire-plugin then add <argLine>-Xbootclasspath/a:/path/to/clover-X.Y.Z.jar</arg
 in the Tycho Surefire Plugin configuration section (see Appendix)Line>

manual tests in standalone product then add as JVM-Xbootclasspath/a:/your/path/to/clover.jar
argument in Eclipse configuration file (eclipse.ini / config.ini)

4) Generate report

Run command line tool or Ant task or the Maven goal in order toHtmlReporter clover-report clover2:clover
generate report.

Appendix 1

Workbench configuration

The diagram below shows how work with manually instrumented sources (Approach #1) can be organized. A
location of Clover database is configured in Ant script.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/Instrumenting+RCP+Application#InstrumentingRCPApplication-Approach#1:Instrumentsourcecodemanually
https://confluence.atlassian.com/display/CLOVER/Instrumenting+RCP+Application#InstrumentingRCPApplication-Approach#1:Instrumentsourcecodemanually
http://docs.atlassian.com/maven-clover2-plugin/3.1.7/instrument-mojo.html
http://docs.atlassian.com/maven-clover2-plugin/3.1.7/clover-mojo.html

Documentation for Clover 4.0 235

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Code sample

You can clone examples provided by Tycho team: git clone http://git.eclipse.org/gitroot/tycho/org.eclipse.tycho-d
emo.git

Go to sample, "itp01" rename it to , use Ant script from below and save it in directory above"original_project" "ori
. Follow instructions below.ginal_project"

Ant script

Sample Ant script which instruments all *.java files from and puts them into project.original.dir project.instrument
, preserving original directory structure. It copies all non-java files as well.ed.dir

<project default="instrument">
 <property name="clover.jar" location="${user.home}/clover.jar"/>
 <property name="ant-contrib.jar"
location="${user.home}/ant-contrib-1.0b3.jar"/>
 <property name="project.original.dir" location="original_project"/>
 <property name="project.instrumented.dir" location="instr_project"/>
 <property name="project.clover.db"
location="${project.instrumented.dir}/.clover/clover.db"/>

 <taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>
 <taskdef resource="net/sf/antcontrib/antlib.xml"
classpath="${ant-contrib.jar}"/>

 <target name="_instrument-dir">
 <!-- Use double-slash for windows paths -->
 <propertyregex property="original.dir.quoted"
input="${project.original.dir}" regexp="\\" replace="\\\\\\\\" global="true"/>
 <propertyregex property="relative.dir" input="${source.dir}"
regexp="${original.dir.quoted}(.*)" select="\1"/>
 <echo message="Instrumenting ${source.dir} into
${project.instrumented.dir}${relative.dir}"/>

http://creativecommons.org/licenses/by/2.5/au/
http://git.eclipse.org/gitroot/tycho/org.eclipse.tycho-demo.git
http://git.eclipse.org/gitroot/tycho/org.eclipse.tycho-demo.git

Documentation for Clover 4.0 236

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 <echo message="Clover database is ${project.clover.db}"/>
 <clover-instr destdir="${project.instrumented.dir}${relative.dir}"
initstring="${project.clover.db}">
 <fileset dir="${project.original.dir}${relative.dir}">
 <include name="**/*.java"/>
 </fileset>
 </clover-instr>
 </target>

 <target name="instrument">
 <!-- Cleanup from previous run -->
 <delete dir="${project.instrumented.dir}"/>
 <!-- Find all source directories, for each of them call clover-instr.
Please note that we cannot use sth like:
 <clover-instr srcdir="${project.original.dir}"
destdir="${project.instrumented.dir}" initstring="${project.clover.db}">
 directly, because clover-instr does not recreate original directory
structure, but puts everything
 under one destdir root.
 -->
 <foreach target="_instrument-dir" param="source.dir" inheritall="true"
inheritrefs="true">
 <path>
 <!-- Define all package roots here -->
 <dirset dir="${project.original.dir}">
 <include name="**/src"/>
 <include name="**/test"/>
 </dirset>
 </path>
 </foreach>

 <!-- Copy all other non-java files as well -->
 <echo message="Copying other files from ${project.original.dir} to
${project.instrumented.dir}"/>
 <copy todir="${project.instrumented.dir}">
 <fileset dir="${project.original.dir}">
 <exclude name="**/*.java"/>
 </fileset>
 </copy>

 <!-- Now we can build it under Tycho. Don't even try to read instrumented
sources ;-) -->
 <echo message="INSTRUMENTATION DONE. Run Maven build in
${project.instrumented.dir}"/>
 </target>

 <target name="report">
 <clover-report initstring="${project.clover.db}">
 <current outfile="current.html">
 <format type="html"/>
 </current>
 <current outfile="current.xml">
 <format type="xml"/>
 </current>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 237

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 </clover-report>
 </target>
</project>

Modified top-level pom.xml

You must have the Clover artefact available during compilation by Tycho. Modify the confitycho-compiler-plugin
guration and add to option.com.atlassian.clover:clover <extraClasspathElements>

If necessary, add also Clover dependency to as JVM argument.tycho-surefire-plugin

<build>
 <plugins>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-compiler-plugin</artifactId>
 <version>0.15.0</version>
 <configuration>
 <extraClasspathElements>
 <!-- Use the same Clover version as for source instrumentation -->
 <dependency>
 <groupId>com.atlassian.clover</groupId>
 <artifactId>clover</artifactId>
 <version>4.0.0</version>
 </dependency>
 </extraClasspathElements>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.eclipse.tycho</groupId>
 <artifactId>tycho-surefire-plugin</artifactId>
 <version>0.15.0</version>
 <configuration>
 <!-- Use the same Clover version as for source instrumentation -->

<argLine>-Xbootclasspath/a:${user.home}/.m2/repository/com/atlassian/clover/clover/
4.0.0/clover-4.0.0.jar</argLine>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

Usage

Directory layout:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 238

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

/original_project - Tycho project
 /pom.xml - must contain 'com.atlassian.clover:clover'
dependency for build and runtime/test
 /module1
 /src - typical location of source folders in eclipse
plug-ins
 /test
 /module2
/instr_project - copy of 'original_project' with instrumented files
created by build script
 /pom.xml
 /module1
 /src
 /test
 /module2
/build.xml - Ant build script from above

Commands:

ant instrument
cd instr_project
mvn install
cd ..
ant report

Clover-for-Maven 2 and 3 Installation Guide
This page contains the installation instructions for Clover-for-Maven 2 and 3.

See:

Clover-for-Maven 2 and 3 Quick Start Guide
Basic usage
Clover-for-Maven 2 and 3 User's Guide

Clover-for-Maven 2 and 3 Upgrade Guide

General instructions

1. Update version number of maven-clover2-plugin in your pom.xml

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version><!-- PUT CLOVER VERSION --></version>
</plugin>

2. Update version number of clover dependency in your pom.xml (optional)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 239

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Your pom.xml may contain a dependency to Clover Core (com.atlassian.clover:clover). Update it's version
number the same version as the maven-clover2-plugin:

<dependency>
 <groupId>com.atlassian.clover</groupId>
 <artifactId>clover</artifactId>
 <version><!-- PUT CLOVER VERSION --></version>
</dependency>

3. Update license key (optional)

Installing new license is necessary if you're installing a Clover version released after end of support date of your
current license.

4. Delete existing coverage databases (optional)

Clover's database format may change in newer versions. In such case you may get a build error with a message
informing about database incompatibility. In such case you have to delete old database files.

 By default, databases are stored in module's /target directory; thanks to this incompatible databases are
removed automatically upon 'mvn clean'.

Upgrading from specific releases

Please see the and the for version-specific upgradeClover Release Notes Clover-for-Maven 2 and 3 Changelog
instructions.

Clover-for-Maven 2 and 3 Changelog
Please also refer to the .Clover-for-Ant Changelog

Clover-for-Maven changelog

The changes for the latest version are as follows:

Changes in Clover-for-Maven 4.0.0

July 14, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look.

Implemented features and fixes

T Key Summary P

CLOV-1345 Apply ADG in the HTML report

CLOV-1471 Maven clover2:setup triggers duplicate class exception

CLOV-1467 Rename com.cenqua to com.atlassian

3 issues

Please see also the for all changes in the Clover product.Clover-for-Ant Changelog

Changes in Clover-for-Maven 3.3.0

April 1, 2014

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22Maven+plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+&src=confmacro

Documentation for Clover 4.0 240

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

This is a major release with a dedicated support for the Spock framework and JUnit4 Parameterized Tests.

Implemented features and fixes

T Key Summary P

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

1 issue

Please see also the for all changes in the Clover product.Clover-for-Ant Changelog

Older versions

Looking for older versions? See .Clover-for-Maven 2 and 3 Changelog for Clover 3.2

Changes in Clover-for-Maven 4.0.0

Changes in Clover-for-Maven 4.0.0

July 14, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look.

Implemented features and fixes

T Key Summary P

CLOV-1345 Apply ADG in the HTML report

CLOV-1471 Maven clover2:setup triggers duplicate class exception

CLOV-1467 Rename com.cenqua to com.atlassian

3 issues

Please see also the for all changes in the Clover product.Clover-for-Ant Changelog

Changes in Clover-for-Maven 3.3.0

Changes in Clover-for-Maven 3.3.0

April 1, 2014

This is a major release with a dedicated support for the Spock framework and JUnit4 Parameterized Tests.

Implemented features and fixes

T Key Summary P

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

1 issue

Please see also the for all changes in the Clover product.Clover-for-Ant Changelog

Clover-for-Maven 2 and 3 FAQ

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22Maven+plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++&src=confmacro
https://confluence.atlassian.com/display/CLOVER032/Clover-for-Maven+2+and+3+Changelog
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1471?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/browse/CLOV-1467?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22Maven+plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+&src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22Maven+plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++&src=confmacro

Documentation for Clover 4.0 241

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover Maven 2 and 3 Plugin FAQ

Deploying Instrumented Jars
How to keep Clover reports between builds?
How to remove -clover suffix from artifact name?
Is there an alternative to using the Maven Central repository?
Preparing multi-module projects for remote deployment with Clover-for-Maven 2
Troubleshooting License problems
Troubleshooting problems with displaying characters

Clover-for-Eclipse

Clover-for-Eclipse Documentation

What is Clover-for-Eclipse?

Clover-for-Eclipse brings the industry-leading
code coverage tool, to theAtlassian Clover
Eclipse integrated development
environment. Clover-for-Eclipse allows you
to easily measure the coverage of your unit
tests, enabling targeted work in unit testing
— resulting in stability and enhanced quality
code with maximal efficiency of effort.

Getting Started with Clover for Eclipse

Download Clover for Eclipse

Installation Guide

Clover for Eclipse in 10 minutes

Changelog for latest version of
Clover-for-Eclipse

Using Clover for Eclipse

User's Guide

Installation & Configuration Guide

Resources and Support

Atlassian Answers

FAQ

Technical Support

Offline Documentation

You can download the Clover documentation
in PDF, HTML or XML format.

Recently Updated

Clover Road Map
Aug 12, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/clover/
http://www.atlassian.com/software/clover/download
https://answers.atlassian.com/tags/clover
http://support.atlassian.com
https://confluence.atlassian.com/display/ALLDOC
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313465693&selectedPageVersions=17&selectedPageVersions=16

Documentation for Clover 4.0 242

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading third party libraries
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Updating optimization snapshot file
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Hacking Clover
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 4 - Test Optimization Tutorial
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 3 - Automating Coverage Checks
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 2 - Historical Reporting
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 1 - Measuring Coverage
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover 4.0 Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

A side-by-side comparison of the Classic and the ADG HTML report
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-Eclipse User's Guide
Overview
Using the plugin
FAQ

Overview

The Clover Eclipse Plugin allows you to instrument your Java code easily from within the Java IDE, andEclipse
to view your coverage results inside Eclipse.

Using the plugin

We recommend starting your adventure with Clover for Eclipse with a following lecture:

1. Clover for Eclipse in 10 minutes

If you need more details how given features work, or how to efficiently work with Clover, you can read about:

2. Exploration of coverage in Eclipse
3. Exploration of test results in Eclipse
4. Scope of instrumentation in Eclipse
5. Eclipse configuration options
6. Generating reports in Eclipse
7. Test Optimization for Eclipse

If you work with Ant-based projects under Eclipse IDE, read the:

8. Launching an Ant build from Eclipse

For more advanced topics, like performance tuning or instrumentation of RCP application, see:

9. Eclipse advanced topics

FAQ

See the . You can also search posts with the clover tag on .Eclipse Plugin FAQ Atlassian Answers

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=310379086&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317949806&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313459430&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=171966945&selectedPageVersions=51&selectedPageVersions=50
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=73793592&selectedPageVersions=14&selectedPageVersions=13
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71600301&selectedPageVersions=48&selectedPageVersions=47
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=72548380&selectedPageVersions=44&selectedPageVersions=43
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=624198431&selectedPageVersions=7&selectedPageVersions=6
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=632980339&selectedPageVersions=4&selectedPageVersions=3
http://www.eclipse.org/
https://answers.atlassian.com/

Documentation for Clover 4.0 243

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.

4.

1. Clover for Eclipse in 10 minutes

This short guide will learn you how to install and use Clover in 10 minutes.

Installing the plugin
Entering license key
Enabling Clover for Java project
Building and running application
Reviewing coverage results

Coverage Explorer
Clover Dashboard
Java Editor
Test Run Explorer
Test Contributions
Coverage Cloud Report
Coverage Treemap Report

Installing the plugin

Select from the menu "Help | Install new software".
Click "Add" button and enter then click OK.http://update.atlassian.com/eclipse/clover
Select "Clover 4" and "Clover 4 Ant Support" features. Disable the checkbox"Contact all update sites..."
(for faster installation). Click "Next" button twice.
Accept license agreement, click "Finish", click "OK" for warning about unsigned content, click "Restart
now".

http://creativecommons.org/licenses/by/2.5/au/
http://update.atlassian.com/eclipse/clover

Documentation for Clover 4.0 244

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

Entering license key

Your Clover-for-Eclipse just downloaded should be shipped with a 30-day evaluation key. You can also obtain
new license keys on site.http://my.atlassian.com

Click Window > Preferences > Clover > License.
Paste the license key (note that the key contains newline characters). Click OK.

Enabling Clover for Java project

Right click on a project in view, select " ". If you wish to "Package Explorer" Clover > Enable on this Project
enable Clover for multiple projects at once, choose "."Enable/Disable on...

http://creativecommons.org/licenses/by/2.5/au/
http://my.atlassian.com

Documentation for Clover 4.0 245

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Four Clover views will be opened automatically:

Coverage Explorer
Test Run Explorer
Clover Dashboard
Test Contributions

You can always open them from :"Window > Show View > Other ... > Clover"

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 246

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Building and running application

Build your project as usual. In order to run it, choose "Run with Clover" button from tool bar:

Reviewing coverage results

Coverage Explorer

It's the best place to start. You will see coverage and metrics for all instrumented projects.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 247

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover Dashboard

It's a place where you can have a quick overview of your project and find hints about code areas you should
focus on:

Coverage - shows percentage coverage of the project
Test Results - shows percentage of passed tests as well as duration
Most Complex Packages - lists several packages with the highest complexity -> refactor
Most Complex Classes - as above, but on a class level -> refactor
Top Project Risks - the most complex and the least tested classes -> refactor and/or write more tests
Least Tested Methods - methods with the lowest test coverage -> write more tests

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 248

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Java Editor

To view coverage information on a line-by-line basis, Clover adds coloured annotations to your project's Java
source code editors.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 249

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Colours used for background highlighting are as follows:

Colour Meaning

Green Coverage from passing tests or due to execution outside tests (e.g. main() method).

Squiggly Red
Lines

Partial branch coverage (caused when only one part of a branch has been covered).

Yellow Failed test coverage (where coverage has only been caused by one or more failing tests
and no passing tests).

Grey Filtered out code.

Red Code with no coverage.

A left margin ruler shows three colour markers:

left half - green if at least part of line is covered, yellow if at least part of line is covered but test has failed,
red for line not covered at all (it's an "optimistic marker")
right half - red if at least part of line is not covered, yellow if at least part of line is covered but test has
failed, green for fully covered line (it's a "pessimistic marker")
right strip - dark green for coverage related with passed tests, dark yellow for coverage related with failed
tests

Test Run Explorer

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 250

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The Test Run Explorer view, lets you explore your recently run tests - showing whether they passed or failed,
their duration and any error messages that they generated. Furthermore, it allows you to explore the code
coverage caused by an individual test, a test class, a package or even your entire project.

After running tests in a Clover-enabled project, on the left-hand side of this view you will see a tree of tests that
were run. On selecting an element on the left-hand side, the right-hand side displays all the application (i.e.
non-test) classes that had coverage caused by the selection.

The right-hand table displays not only the names of the classes that were partially or fully covered by the test
methods, but also the percentage of class' total coverage that is attributable to the test method (the test
method's coverage contribution) as well as the percentage of the class' coverage that was attributable only to
the selected test method (the test method's unique coverage).

Test Contributions

The Test Contributions view shows unit tests and methods that generated coverage for the currently opened and
selected Java source file. As you switch between Java source file editors, the top most tree is updated with the
test methods that contributed to coverage of this file. The bottom tree tracks the test methods that contributed to
coverage of the file at the current cursor position.

The Test Contributions view allows you to better understand the relationship between your test code and your
application code.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 251

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Cloud Report

Coverage cloud report are a great way to work out the classes that form major risks (low coverage but high
complexity) to your project and its packages, and also to highlight potential quick wins for increasing the overall
project or per-package coverage. The coverage cloud report can be generated by right clicking on your
Clover-enabled project in the Coverage Explorer view or Test Run Explorer view and selecting Generate
Coverage Cloud.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 252

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Treemap Report

The coverage treemap report allows simultaneous comparison of classes and package by complexity and by
code coverage. The treemap is divided by package (labelled) and then further divided by class (unlabelled). The
size of the package or class indicates its complexity (larger squares indicate great complexity). Colours indicate
the level of coverage (bright green - most covered, bright red - uncovered).

The treemap cloud report can be generated by right clicking on your Clover-enabled project in the Coverage
Explorer and selecting Generate Coverage Treemap.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 253

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Congratulations! You now know basics of plugin - enough to start your daily work with it.Clover for Eclipse

If you like to learn more, read the chapter.2. Exploration of coverage in Eclipse

2. Exploration of coverage in Eclipse

The Clover Coverage Explorer
Columns
Summary Panel
Actions and Menus

Viewing Coverage Results
Source Code Annotations
Coverage Cloud Reports

Package Risks
Quick Wins

 Coverage Treemap Reports

The Clover Coverage Explorer

The Coverage Explorer allows you to view and control Clover's instrumentation of your Java projects, and shows
you the coverage statistics for each project based on recent test runs or application runs. It is automatically
added to the workbench when you enable Clover for your project. If the viewer is closed, you can open it again
using "Window | Show View | Other..." and selecting "Clover | Coverage Explorer".

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 254

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The main tree shows coverage and metrics information for packages, files, class and methods of any
Clover-enabled project in your workspace. Clover will auto-detect which classes are your tests and which are
your application classes - by using the drop-down box above the tree you can then restrict the coverage tree
shown so that you only see coverage for application classes, test classes or both.

Screenshot: Clover Coverage Explorer

Columns

Initially the Coverage Explorer's tree displays the following four columns:

Element - The name of the package, file, class or method.
%TOTAL Coverage - The total coverage of the element as a percentage.
Complexity - The cyclomatic complexity of the element
Average Method Complexity - The average method complexity of the element

Clover supports which can be chosen in the Coverage Explorer Column Chooser. The24 standard column types
Column Chooser can be summoned by selecting "Columns..." in the Coverage Explorer view menu.

Screenshot: Coverage Explorer Column Chooser

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-ColumnNames

Documentation for Clover 4.0 255

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover-for-Eclipse also lets your define your own custom columns for display within the Coverage Explorer tree.
While choosing columns in the Column Chooser dialog, click the "New" button to summon the Custom Column
Builder dialog. Custom columns must have a name and a valid . Custom columns may be left,Clover expression
center or right justified and the value may be displayed as a decimal value or as a percentage value. Clover
expressions can refer to any of the 24 standard columns; these references can be easily inserted into the
expression by selecting "Insert..." and choosing the appropriate column name.

Screenshot: Coverage Explorer Custom Column Builder

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-CloverEL

Documentation for Clover 4.0 256

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Summary Panel

Summary metrics are displayed alongside the tree for the selected project, package, file, class or method in the
tree. The following metrics are provided:

Structure
Packages: The number of packages the project or package root contains
Files: The number of files the package, package root or project contains
Classes: The number of classes the file, package, package root or project contains
Methods: The number of methods the class, file, package, package root or project contains
Statements: The number of statements the method, class, file, package, package root or project
contains
Branches: The number of branches the method, class, file, package, package root or project
contains

 Tests:
Tests: The total number of tests in the class, file, package, package root or project
Passes: The total number of passing tests in the class, file, package, package root or project
Fails: The total number of failing tests in the class, file, package, package root or project
Errors: The total number of tests with errors in the class, file, package, package root or project.
Currently Clover does not differentiate between fails and errors and counts all errors as failures.

Source:
LOC: The total number of lines of code in the class, file, package, package root or project
NC LOC: The total number of non-commented lines of code in the class, file, package, package
root or project
Total Cmp: The total cyclomatic complexity of code in the method, class, file, package, package
root or project
Avg Method Cmp: The average method complexity of the class, file, package, package root or
project
Cmp Density: The complexity density of code in the class, file, package, package root or project

Actions and Menus

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 257

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The Coverage Explorer view allows the following actions (from the view toolbar, menu or both):

Enable/Disable Clover On... Allows you to select multiple project to enable or disable Clover for. This
allows you, for example, to quickly turn Clover on for all projects in your workspace in one action.
Refresh Coverage Data. Re-loads from disk the Clover coverage data for the selected project.
Delete Coverage Recordings. Deletes the coverage recording data recorded from test runs or
applications runs for the selected project.
Clear Snapshot Deletes the snapshot fileTest Optimization
Compiled with Clover. Toggles the use of Clover instrumentation when Eclipse compiles the selected
Java project.
Edit Context Filter... Allows you to edit the block and custom coverage 'contexts' used to help you filter
out unwanted coverage data. An explanation of what contexts are can be found .here

Generate Coverage Treemap. Generates a mini report page in treemap format for the selected project.
This report arranges package and classes enabling easy comparison of their complexity while also
indicating their level of code coverage.
Generate Coverage Cloud. Generates a report page in cloud tag format for the selected project. This
lists classes considered project risks or quick wins.
Coverage Reports > Run new report... Launches the report generation wizard that will take you through
the steps required to generate a PDF, HTML or XML. These reports can be generated for single or
multiple projects.
Coverage Reports > View report Browse recently generated reports.

Coverage in Explorer > Show All Classes. Shows code coverage for all application and test classes in
the Coverage Explorer.
Coverage in Explorer > Show Only Application Classes. Shows code coverage only for application
(non-test) classes in the Coverage Explorer.
Coverage in Explorer > Show Only Test Classes. Shows code coverage only for test classes in the
Coverage Explorer.

Enable Clover Working Set. Enables or disables usage of the Clover working set. This filters the files,
directories and projects that Clover will report on and are especially handy for large projects.
Edit Clover Working Set... Allows you to edit the files, directories and projects in the Clover working set.
Clear Clover Working Set. Removes all files, directories and projects from the Clover working set.

Hide Unavailable. This check button hides any elements in the Coverage Explorer's tree that don't have
associated coverage information and helps reduce visual clutter. For instance, with this button checked
any project that isn't Clover-enabled will not be shown in the Coverage View.
Hide 100% Covered. This check button hides any elements in the Coverage Explorer's tree that have full
coverage and helps you focus on only those classes that require more testing.

Layout > Packages. Arranges the coverage tree by package. This is useful if you have a single source
directory for your project.
Layout > Package Roots. Arranges the coverage tree first by package root, then by package. This is
useful if you have multiple source directories within your project.
Layout > Hierarchical packages Toggle showing packages in hierarchical or flat list.

Columns... Allows you to customise the columns shown shown in the Coverage Explorer.

Coverage in Editors > Show All. Shows red/green coverage areas in open Java editors. This is useful
for finding out exactly which parts of the code are being covered.
Coverage in Editors > Show Uncovered. Shows only red (uncovered) areas in open Java editors. This
is useful for finding out exactly which parts of the code are not being covered while not cluttering your
editor with the overwhelming large green areas (covered code).
Coverage in Editors > Show None. Hides all red/green coverage areas in open Java editors.
Include passed only If enabled, code coverage from failed tests will not be taken into account.
Show exclusion annotations If enabled, draws small Clover icons in the Package Explorer view for
every source file, indicating whether it's included or excluded from instrumentation.
About Shows information about Clover version, copyright and licences.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts

Documentation for Clover 4.0 258

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The Coverage Explorer view has also actions accessible from buttons and links in browser (left panel) as well as
on left/right click on elements in a browser:

Show: All Classes Shows code coverage for all application and test classes in the Coverage Explorer.
Show: Application classes Shows code coverage only for application (non-test) classes in the
Coverage Explorer.
Show: Test classes Shows code coverage only for test classes in the Coverage Explorer.

Workspace Settings > Aggregate coverage generated since the last clean build If enabled,
coverage from all test or application runs will sum up (the "Delete Coverage Recordings" action or full
project rebuild will clean them).
Workspace Settings > Track per-test coverage If enabled, Clover will track individual code coverage
generated by every test case. It's useful for checking what code has been exactly covered by given tests
or which tests are the most relevant for given application code.
Workspace Settings > Keep per-test coverage data fully in memory If enabled, per-test coverage
will be stored in memory instead temporary files on disk. Attention: can consume a lot of memory.
Workspace Settings > Look for updated coverage every N s Whether and how frequently Clover
should refresh coverage view

Project Settings > Instrument and compile The "statement level" is recommended as it gives the most
accurate information. The "method level" records only whether given method was called or not; it can be
used for very large projects (as produces smaller instrumentation overhead and compiles faster) or when
you need just rough information about coverage.

Viewing Coverage Results

The Clover-for-Eclipse plugin shows coverage data in number of ways. Viewing any coverage data, of course,
requires that you have executed tests or you have launched your application and it also requires that Clover has
detected the change in coverage. On the Clover preferences page, you can change how often Clover looks for
new coverage data for your application or tests.

Source Code Annotations

To view coverage information on a line-by-line basis, Clover adds coloured annotations to your project's Java
source code editors.

Screenshot: Clover Source Annotations in Java editor

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 259

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The table below explains the meanings of various colours:

Annotation
Colour

Meaning

Green Coverage from passing tests.

Green Coverage caused incidentally (caused by something other than test methods, e.g. main()
methods, test setUp() and tearDown() methods). A different tooltip is presented to show it is
incidental.

Squiggly
Red Lines

Partial branch coverage (caused when only one part of a branch has been covered).

Yellow Failed test coverage (where coverage has only been caused by one or more failing tests and
no passing tests).

Grey Filtered out code.

Red Code with no coverage.

A left margin ruler shows three colour markers:

left half - green if at least part of line is covered, yellow if at least part of line is covered but only from
failed tests, red if line is not covered at all (it's an "optimistic marker")

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 260

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

right half - red if at least part of line is not covered, yellow if at least part of line is covered but only from
failed tests, green for fully covered line (it's an "pessimistic marker")
right strip - dark green for coverage related with passed tests, dark yellow for coverage related with failed
tests

Each coloured source annotation displays a tool tip providing more information about the relevant line or lines.
These coverage annotations are added automatically to any opened source files from a Clover-enabled project.
For example, if a statement was executed ten times, or a conditional expression was only executed twice in the
true case but never in the false case, this information will appear in the tool tip.

If you wish to switch off the source code annotations, you can easily do so by de-selecting the menu / toolbar
item "Show Coverage in Editor" on the Coverage Explorer view or Test Run Explorer view. Using an adjacent
menu / toolbar item you can also force Clover to only annotate code without coverage, thus only showing the red
annotations.

You can also change these colours and effects in Eclipse. To do so, access 'Eclipse Preferences > General >
'. On this page, see the ' ' list and click the settings thatEditors > Text Editors > Annotations Annotation Types

begin with 'Clover'.

Screenshot: Clover Source Annotation Settings

Coverage Cloud Reports

Coverage cloud report are a great way to work out the classes that form major risks (low coverage but high
complexity) to your project and its packages, and also to highlight potential quick wins for increasing the overall
project or per-package coverage.

The coverage cloud report has two tabs, one tab for the project/package risks cloud and the other for quick wins

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 261

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

cloud. Each cloud shows the classes of the project/package enlarged or reduced depending on their significance
to the report and clicking on any class name will open the corresponding source file in an editor. At the bottom of
the report you can select the target for the clouds - either the entire project or one of the packages within the
project - changing this will update the cloud tabs. Where a package is selected and has sub-packages, the
checkbox "Include classes from sub-packages" allows you to include or exclude sub-package clouds from the
clouds.

The coverage cloud report can be generated by right clicking on your Clover-enabled project in the Coverage
Explorer view or Test Run Explorer view and selecting Generate Coverage Cloud.

Package Risks

The Package Risks Cloud highlights those classes that are the bymost complex, yet are the least covered

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 262

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

your tests. The larger and redder the class, the greater the risk that class poses for your project or package.
Package risk clouds can be toggled to include or exclude classes in sub-packages.

Metric Attribute

Average Method Complexity Font Size

% Coverage Font Color

Quick Wins

This Cloud highlights the of your project or package. You will achieve the"low hanging coverage fruit"
greatest increase in overall project coverage by covering the largest, reddest classes first. Package Quick Win
clouds can be toggled to include or exclude classes in sub-packages.

Metric Attribute

Number of Elements Font Size

Number of Elements Untested Font Color

 Coverage Treemap Reports

The coverage treemap report allows simultaneous comparison of classes and package by complexity and by
code coverage. The treemap is divided by package (labelled) and then further divided by class (unlabelled). The
size of the package or class indicates its complexity (larger squares indicate great complexity, while smaller
squares indicate less complexity). Colours indicate the level of coverage, as follows:

Bright green (most covered)
Dark green (more coverage)
Black (around 50% coverage)
Dark Red (little coverage)
Bright Red (uncovered)

The percentage shown in the yellow box is the code coverage for the class currently under the mouse.

Right clicking on a package area and selecting the magnify option will then focus the treemap on the package's
classes. Right clicking again and selecting the demagnify option will re-focus on the project's top level. Double
clicking on a class will open the corresponding source file in an editor.

The treemap cloud report can be generated by right clicking on your Clover-enabled project in the Coverage
Explorer and selecting . You can also click on a buttGenerate Coverage Treemap Generate a coverage treemap
on.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 263

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Now you perfectly know how your application is covered. But how to efficiently navigate between tests and
application code? Read the chapter.3. Exploration of test results in Eclipse

3. Exploration of test results in Eclipse

Test Run Explorer
Actions and Menus

Test Contributions

Test Run Explorer

The Test Run Explorer view, like several popular plugins such as the JUnit Plugin or TestNG Plugin, lets you
explore your recently run tests - showing whether they passed or failed, their duration and any error messages
that they generated. Clover-for-Eclipse takes this one step further and allows you to explore the code coverage
caused by an individual test, a test class, a package or even your entire project.

After running tests in a Clover-enabled project, select the Test Run Explorer view (or to open it, select Window >
). On the left-hand side of this view you will see a tree ofShow Views > Other... > Clover > Test Run Explorer

tests that were run and their containers such as classes, packages, projects. On selecting an element on the
left-hand side, the right-hand side displays all the application (i.e. non-test) classes that had coverage caused by
the selection.

For example, selecting a test method on the left side will cause the right-hand side to show the application

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 264

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.

classes with code executed (directly or indirectly) by that test method. Selecting a test class or test package will
cause the right-hand side to show application classes with code executed by all the test methods contained by
the test classes or test package.

The right-hand table displays not only the names of the classes that were partially or fully covered by the test
methods, but also the percentage of class' total coverage that is attributable to the test method (the test
method's coverage contribution) as well as the percentage of the class' coverage that was attributable only to
the selected test method (the test method's unique coverage).

The tree of tests and their containers on the left-hand tree can be presented in three different ways for maximum
convenience:

Test Cases: shows "Project > Test Methods" (qualified with Test Class names)
Packages : shows "Project > Package > Test Class > Test Methods" layout
Source Roots: shows "Project > Source Root > Package > Test Class > Test Methods" layout

Actions and Menus

The Test Run Explorer view allows the following actions (from the view toolbar, menu or both):

Enable/Disable Clover On... Allows you to select multiple project to enable or disable Clover for. This
allows you, for example, to quickly turn Clover on for all projects in your workspace in one action.
Refresh Coverage Data. Re-loads from disk the Clover coverage data for the selected project.
Delete Coverage Recordings. Deletes the coverage recording data recorded from test runs or
applications runs for the selected project.
Clear Snapshot Deletes the snapshot fileTest Optimization
Compiled with Clover. Toggles the use of Clover instrumentation when Eclipse compiles the selected
Java project.
Edit Context Filter... Allows you to edit the block and custom coverage 'contexts' used to help you filter
out unwanted coverage data. An explanation of what contexts are can be found .here

Generate Coverage Treemap. Generates a mini report page in treemap format for the selected project.
This report arranges package and classes enabling easy comparison of their complexity while also
indicating their level of code coverage.
Generate Coverage Cloud. Generates a report page in cloud tag format for the selected project. This
lists classes considered project risks or quick wins.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts

Documentation for Clover 4.0 265

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Reports > Run new report... Launches the report generation wizard that will take you through
the steps required to generate a PDF, HTML or XML. These reports can be generated for single or
multiple projects.
Coverage Reports > View report Browse recently generated reports.

Layout > Test cases Shows "Project > Test Methods" layout
Layout > Packages Shows "Project > Package > Test Class > Test Methods" layout
Layout > Source roots Shows "Project > Source Root > Package > Test Class > Test Methods" layout

Coverage in Editors > Show All. Shows red/green coverage areas in open Java editors. This is useful
for finding out exactly which parts of the code are being covered.
Coverage in Editors > Show Uncovered. Shows only red (uncovered) areas in open Java editors. This
is useful for finding out exactly which parts of the code are not being covered while not cluttering your
editor with the overwhelming large green areas (covered code).
Coverage in Editors > Show None. Hides all red/green coverage areas in open Java editors.
Include passed only If enabled, code coverage from failed tests will not be taken into account.
Show exclusion annotations If enabled, draws small Clover icons in the Package Explorer view for
every source file, indicating whether it's included or excluded from instrumentation.

Enable Clover Working Set. Enables or disables usage of the Clover working set. This filters the files,
directories and projects that Clover will report on and are especially handy for large projects.
Edit Clover Working Set... Allows you to edit the files, directories and projects in the Clover working set.
Clear Clover Working Set. Removes all files, directories and projects from the Clover working set.

About Shows information about Clover version, copyright and licences.

Note that double-clicking on any element in left or right pane will navigate you directly to the source code.

Test Contributions

The Test Contributions view shows unit tests and methods that generated coverage for the currently opened and
selected Java source file. As you switch between Java source file editors, the top most tree is updated with the
test methods that contributed to coverage of this file. Clicking on the any of the tests and their methods will take
you to their associated source. Unchecking a test or test method will remove the coverage it provides from the
open source file. The bottom tree tracks the test methods that contributed to coverage of the file at the current
cursor position.

The Test Contributions view allows you to better understand the relationship between your test code and your
application code as you move between Java source files.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 266

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

You have already learned how to navigate through code coverage and test results. But don't you have a feeling
that your coverage reports could be more accurate when focused on important areas of application? If youreally
do so, don't hesitate to read to learn how to configure instrumentation4. Scope of instrumentation in Eclipse
scope from whole projects down to a single line of code.

4. Scope of instrumentation in Eclipse

Clover provides many ways to fine-tune instrumentation scope, which gives you an ability to concentrate your
work on the most important code.

Enabling and disabling Clover for selected projects
Enabling and disabling instrumentation for Clover-enabled projects
Excluding and including packages
Excluding and including files
Excluding certain blocks of code
Excluding methods and statements matching regular expression
Excluding arbitrary lines of code
Setting instrumentation detail level
Showing Clover coverage annotations in Java source editors

Enabling and disabling Clover for selected projects

If you want to completely disable Clover support for a project (which will remove it from the three Clover views,

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 267

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

remove all Clover data etc), then right click on the project and select . If you"Clover > Disable on this Project"
wish to enable/disable Clover on multiple projects, right click on one of them and select "Clover | Enable/Disable

 and select the projects you wish to have Clover enabled/disabled for.on..."

Enabling and disabling instrumentation for Clover-enabled projects

In order to track the code coverage of your projects, Clover must insert special code into your programs at
compilation time - called instrumentation - to record this coverage. When Clover is enabled on your projects,
Clover will automatically perform this task for every file you compile in the project. You can tell Clover not to
instrument your projects by:

right clicking on them in the or views and deselecting Coverage Explorer Test Run Explorer "Compiled
 option orwith Clover"

selecting them in the or views and clicking Coverage Explorer Test Run Explorer "Toggle whether Clover
 buttonInstrumentation..."

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 268

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding and including packages

Right click on a package in view, choose fromPackage Explorer "Clover > Include/Exclude <package name>"
context menu.

Excluding and including files

Right click on a file in view, choose from contextPackage Explorer "Clover > Include/Exclude <file name>"
menu.

Excluding certain blocks of code

Right click on a project in view, choose from context menu, next Package Explorer "Properties" "Clover >
 tab.Instrumentation"

In the you can choose Java language constructs or coding patterns to beStandard Coverage Context Filters
excluded. The most interesting are:

assert statements
catch body
finally body
private methods (all methods having private keyword)
property methods (all methods having name like getXyz() / setXyz() / isXyz(), being public and having no
arguments for isXyz/getXyz)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 269

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding methods and statements matching regular expression

Right click on a project in view, choose from context menu, next Package Explorer "Properties" "Clover >
 tab.Instrumentation"

In the you can define regular expressions for method signatures andCustom Coverage Context Filters
statements.

Excluding arbitrary lines of code

Put "///CLOVER:OFF" and "///CLOVER:ON" in source code (note that three slashes are used) to exclude given
sections.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 270

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Setting instrumentation detail level

Left click on a project in Coverage Explorer view. A pop-up will show with "Instrument and compile at" having
two options:

statement level - it is a recommended setting as it gives the most accurate information about code
coverage; Clover will record information about: method calls, statement calls and whether given branch
was evaluated to true/false.
method level - it records only whether given method was called or not; this option can be useful for very
large projects (as it produces smaller instrumentation overhead and code compilation is faster) or when
you need just rough information about coverage

Showing Clover coverage annotations in Java source editors

If you wish to temporarily disable the red/green code coverage annotations in your Java source editors (but wish
to continue using Clover on your projects), you can simple toggle one of three toggles:

"Show All"
"Show Uncovered"
"Show None"

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 271

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

This setting applies to all Clover-enabled projects in the workspace.

Now you have your project instrumentation tuned to your needs. Are you looking for more tweaks? Read the 5.
 chapter.Eclipse configuration options

5. Eclipse configuration options

Project Properties
Clover - Instrumentation
Clover - Contexts
Clover - Source Files
Clover - Test Classes

Global Preferences
Clover - General
Clover - License
Clover - Test Optimization
Text Editors - Annotations

The Clover Eclipse plugin's configuration can be accessed in three places:

From the "Clover" page of a project's properties dialog (Project > Properties > Clover).
From the "Clover" page of the workspace preferences (Window > Preferences > Clover).
From the "Annotations" page of the workspace preferences (Window > Preferences > General > Editors >
Text Editors > Annotations)

Project Properties

Clover - Instrumentation

These options control how Clover instrumentation works when "Compile with Clover" is selected on your project.

Initstring - This controls where the Clover plugin stores (and looks for) the coverage database. You may
want to specify a custom value if you want the Clover coverage data generated to be available to an
external merge task or report generation.

Flush Policy - The Flush Policy controls how Clover writes coverage data to disk when your application
runs.

"At JVM shutdown and on special instruction" is the default and means coverage data is written to
disk when the JVM shutsdown or when Clover encounters an inline comment directive instructing it
to flush.
"At set intervals" allows you to specify that coverage data should be written out at regular intervals.
"At set intervals from a Clover thread" causes Clover to create a separate thread within your
application which regularly flushes coverage data to disk. See .Flush Policies
These options control the compilation of the instrumented source code that Clover generate.

Output Folder - This specifies where instrumented classes are placed after compilation.
"Copy instrumented class files to project output dir(s)" will cause instrumented classes to be placed
in the same folder or folders as Eclipse would normally place class files according to your project
settings. In this mode Clover will only output instrumented class files.
"Copy instrumented class files to a different project dir" will place instrumented class files in the

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+a+Flush+Policy

Documentation for Clover 4.0 272

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

folder specified by you and continue to place un-instrumented class files in the project's configured
output folder(s).
"Recreate original output folders" if checked, instrumented packages and classes will be placed in
subfolders that mimic the original output folders relative to the project root

Miscellaneous - other settings
"Fully qualify instrumentation references to java.lang classes" - if checked, all classes from java.lan

 package will be referenced using their fully qualified name; this option avoids name conflicts ing
case your project contains classes named the same as those from package.java.lang
"Instrument and compile at: statement level / method level" - statement level instrumentation is
more accurate but has a runtime performance penalty, method level instrumentation is less
accurate but will run faster. We recommend using statement level unless you have a performance
issue. (Since Clover 3.1.8).
"Instrument lambda functions" - whether Java 8 lambda functions shall be instrumented. If
instrumented, they're treated like normal methods (they can be shown in HTML report and
considered in code metrics, for example). Possible values:

none - do not instrument lambda functions,
expression - instrument lambdas in expression-like form, e.g. , "(a, b) -> a + b"
block - instrument lambdas in code blocks, e.g. , "(a, b) -> { return a + b; }"
all - instrument all lambda functions.

 Due to Clover's restrictions related with code instrumentation and javac compiler's type
inference capabilities, you may get compilation errors when expression-like lambda functions are
passed to generic methods or types. In such case disable instrumentation of expression-like form
(i.e. use the or setting). See the Knnone block Java 8 code instrumented by Clover fails to compile
owledge Base article for more details. (Option available since Clover 3.3.0).

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVERKB/Java+8+code+instrumented+by+Clover+fails+to+compile

Documentation for Clover 4.0 273

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover - Contexts

Clover's coverage contexts allow you to filter out certain parts of your project's code when considering how much
of your code is covered. This is useful when you do not have 100% code coverage yet don't feel the uncovered
code is of sufficient importance to invest time to test. See for an in-depth discussion ofUsing Coverage Contexts
contexts and how they are used.

Clover recognises two main types of contexts - block contexts which are pre-defined by Clover, and custom
contexts which are defined by you.

Block Contexts - these are pre-defined by Clover and refer to common Java coding constructs or idioms
such as the body of if statements; static initialiser blocks; or property style methods.

Custom Contexts -Are defined by you and and come in two flavours - method contexts and statement
contexts.

Methods contexts are specified as regular expressions that match methods in your classes. For
example, a method context of "(.*)?public .(foo|bar)(. will identify any public method named foo*"
or bar. You could then later filter out coverage for such methods if you considered them

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts

Documentation for Clover 4.0 274

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

unimportant to your project's total coverage figures. See Using Coverage Contexts - Method
.Contexts

Statement contexts are also specified as regular expressions and they match statements in your
methods. For example, a statement context of ". " would identify identify statementsLOG\.debug.
that perform debug level logging. You could then filter out coverage for these logging statements if
you found their coverage (or lack of coverage) too distracting.

Clover - Source Files

The Source Files tab let you select in detail what exactly should be instrumented. You can select one of the
following:

A global pattern for including and/or excluding source files.
A per-source root selection (including per-source root includes/excludes).

This configuration window allows you to use Ant-style pattern sets. If there are only certain source files you want
instrumented, then by using these Ant-style include and exclude pattern sets you can fine-tune how Clover
determines whether files are eligible for instrumentation. For example, by using an "Excludes" value of **/remote

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts#UsingCoverageContexts-MethodContexts
http://confluence.atlassian.com/display/CLOVER/Using+Coverage+Contexts#UsingCoverageContexts-MethodContexts

Documentation for Clover 4.0 275

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 you will stop instrumentation of files in the "remote" folder of your project./*.java

Look in all source folders and apply the following Ant-style pattern sets (relative to the project
root) -
Applies your pattern sets to all source folders.

Only look in these folders and apply their Ant-style pattern sets (relative to the project root) -
Applies your pattern sets to all specified set of folders.

Clover - Test Classes

The Test classes tab lets you select how Clover should look for your tests. You can select from one of the
following:

A global pattern for including and/or excluding source files.
A per-source root selection.
None (Clover makes no attempt to look for tests).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 276

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Global Preferences

Clover - General

These options control how Clover works across all projects which have "Compile with Clover" enabled.

When rebuilding project - when you rebuild a project, Clover will ask you whether you want to delete the
existing coverage information. This section allows you to specify what the default action should be, and
whether Clover should prompt you at all.
Coverage visualisation should

Refresh automatically if enabled, the plugin will check for updated coverage data atevery Ns -
the frequency given below and display and new coverage. If it is not enabled, then you will need to
use the "Refresh Coverage Data" button to see updated coverage data.
Span coverage before build - the span attribute allows you to control which coverage recordings
are merged to form a current coverage report. For more information, see .Using Spans

When changing the coverage context filter for a project - when you change context filter, Clover can
perform full rebuild of a project or let you rebuild it manually; "Ask me each time" sets whether Clover
should prompt about it

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Using+Spans

Documentation for Clover 4.0 277

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

When changing the instrumentation source settings for a project - similar as above
Miscellaneous settings

When generating reports first initialise AWT in the UI thread - is a compatibility setting for
certain systems. Please leave this in its default setting unless advised otherwise by Atlassian
support personnel.
Annotate Package Explorer icons to show source Clover exclusions - If enabled, Clover will
add small icons in the Package Explorer view for every source file, indicating whether it's included
or excluded from instrumentation.
Clover plugin logging output level allows you to set the logging output of the plugin to one of
four levels: , or . Output will be written to standard Eclipse log fileinfo, verbose debug none
(<eclipse_workspace>\.metadata\.log).
Automatically open Clover views when enabling Clover on a project
When selected, Clover will automatically open four standards views ("Coverage Explorer", "Test
Run Explorer", "Test Contributions", "Clover Dashboard") in the current perspective every time
Clover is being enabled on a project (e.g. by right click on a project and selecting "Clover ->
Enable/Disable on"). De-selecting this option is useful when you don't use some of Clover views
and don't want to have them re-appearing
Preserve instrumented sources in temporary directory
When enabled, Clover will keep a copy of every instrumented source file in the temporary directory
(in Eclipse workspace). This allows to see the exact content of file which was passed to the
compiler. Use this option for troubleshooting only, i.e. when you believe that code was incorrectly
instrumented. There is no reason to have this option enabled during normal work. Files will not be
automatically removed, so you'd have to clean temporary directory manually. Files are stored in a
structure reflecting project layout. When you enable this option, the "Logging Level" will
automatically switch to "Info". After every compilation you can find a message in Error Log view
about location of instrumented files, for example:
CLOVER: Instrumented sources have been preserved in
<workspace>\.metadata\.plugins\org.eclipse.core.resources\.projects\Moneybags\com.cenqua.clo
ver.core\CLOV_INSTR_SRC

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 278

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover - License

This option allows you to view and change the license you use with Clover.

License text — When you receive a Clover license from Atlassian, you should copy its contents to this
text box. If the license text is on the clipboard then clicking the "Paste" button will paste it to this text box
automatically. If you have saved the Clover license to a file then clicking the "Load..." button will allow you
to select the file and fill the text box with its contents.
Summary — The summary box summarises the nature of the currently-enabled Clover license.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 279

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover - Test Optimization

This page allows to view and change Test Optimization settings.

Show dialog when no tests need to be run - if enabled, Clover will show pop-up in case when due to
test optimization no test case have been executed
Discard snapshot every N compiles - if enabled, Clover will delete test optimization file after N builds
(thus causing that no tests will be optimized during next test run)
Minimize tests - if enabled, Clover will execute only these tests which have failed or these which are
affected by code changes; otherwise all tests are executed
Test reordering

Do not reorder - no change in test execution order
Failing tests first - tests are first sorted by test result from previous run (failing first) and next by
their execution time (shortest first)
Random order - tests are shuffled in random order; this option is good for detecting unwanted
cross-test dependencies

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 280

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Text Editors - Annotations

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 281

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Code markers are as follows:

Clover: Code covered - code which has been covered during execution
Clover: Code covered (but not directly by test execution) - code which has been covered, but there is
no related test case (e.g. from a call of the method)main()
Clover: Code covered (but not for all branches) - code with a partial branch coverage (caused when
only one part of a branch has been covered)
Clover: Code covered (but only by failing tests) - code which has been covered, but all related test
cases are failing
Clover: Code covered (filtered from view) - code which has been filtered out
Clover: Code not covered - code which has been never executed
Clover: Passed tests (at least one) - colour for overview ruler marker stripe indicating that at least one
passing test case is related with given line
Clover: Failed tests (all of them) - colour for overview ruler marker stripe indicating that all tests related
with given line are failing

Now you have tweaked and hacked Clover according to your developer needs. But you would like to share
information about code coverage with you colleagues or present it to management? If yes, read next chapter: 6.

.Generating reports in Eclipse

6. Generating reports in Eclipse

Introduction
Generating a Report

Select an Output Format
Select the Source Project
Configure General Settings for the Report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 282

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Configuring a Report Filter
Configuring Your Report JVM
Finalise the Report

Opening the Generated Report

Introduction

The Clover-for-Eclipse plugin allows you to generate HTML, PDF or XML reports from Clover-enabone or more
led projects in the current workspace.

Generating a Report

To create a report, select a project or source file then click the left-hand side of the Report Button in Eclipse. The
' ' dialog opens.Generate Report: Report Format

 It doesn't matter whether you select a project or an element of a project — the reports operate at the project
level. Currently, Clover doesn't support reporting on the sub-sets of a project.

Select an Output Format

For your report, you can select an output format of HTML, PDF or XML.

To select the desired output format, click the corresponding radio button in the 'Generate Report: Report
' dialog and click ' '. The ' ' dialog opens.Format Next Generate Report: Project Selection

Select the Source Project

A list of available projects will be displayed. To choose one, click the tick box shown next to the desired project

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 283

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

and click ' '. A dialog box with specific settings for the chosen report type opens.Next

 More than one project can be selected (this would be used for instance if the user has multiple related
projects or has application code in one project, with test code in another).

Configure General Settings for the Report

Your report can make use of the following settings:

Setting Default Description

Report Title <project
name>
Coverage
Report

Report title.

Output directory <project
dir>\report\html

Directory where report will be written to. In case when report already
exists in this location, appropriate warning will be displayed.

Use current filter
settings from this
project

True If the user un-checks this they will be given the opportunity to set a
custom context.

Include failed test
coverage

True Tests from failed tests are included by default but can be excluded if
they wish to discount this as worthy of being reported.

Threads
allocated (only
for HTML
reports)

1 (range: 1-4) Using more threads may product the report faster but will use more
memory. 1 is recommended for large projects.

Include source
(only for HTML
reports)

True Whether to include source code in the HTML reports. Not including
source will mean users can't see per-line coverage information but
report generation will run faster.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 284

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Include line info
(only for XML
reports)

False Whether line by line coverage information is added to the report.

Configuring a Report Filter

Report Filter Configuration is only shown if you choose not to accept default filter settings. This lets you select
any of the predefined pre-defined filters or any of the custom method or statement filters you have previously
configured.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 285

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Configuring Your Report JVM

On this page you can set maximum heap size (default: 512 MB) and additional JVM arguments (typically don't
need to supply these unless Atlassian support tells to).

Finalise the Report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 286

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clicking ' ' will start the report generation process. Log output will appear in the Eclipse console area. Finish

Opening the Generated Report

When report generation is complete, a dialog box will prompt you to open one of the following options:

HTML report
HTML reports will be viewed either via the External Web Browser / Eclipse Web Browser (on supported
platforms).
XML report
XML files will be viewed in either the External XML Editor / Eclipse XML Editor / Eclipse Text Editor
PDF report
PDF files will be viewed in the External PDF Viewer.

After a report is generated, an entry is added to the drop-down on the right-hand side of the report button in the
Clover views which allow users to quickly re-open the report.

Sample PDF Report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 287

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Next chapter: .7. Test Optimization for Eclipse

7. Test Optimization for Eclipse

This page explains how to set up Clover's Test Optimization feature in the Eclipse development environment.

On this page:

Before You Begin
Launching Test Optimization
Measuring Test Optimization Results
Test Optimization Settings

Setting Global Preferences
Setting Per-launcher Preferences

Configurations Unsuitable For Test Optimization
Limitations with Multi-Project Set-Ups
Limitations with Test Suites
Limitations with Testing Frameworks

Troubleshooting

Before You Begin

Before using Test Optimization with Clover-for-Eclipse, be aware of the following.

Test Optimization is available as a launch command, similar to ' ' or ' '.Run Debug
Test Optimization supports JUnit launch configurations only.
Ensure you have Clover enabled on the project - when there is no Clover instrumentation, there is no Test
Optimization.

Launching Test Optimization

To establish Test Optimization in Clover-for-Eclipse, carry out one of the following actions:

Select a folder or package containing test classes and click the ' ' icon , ORRun Optimized
Right-click on a folder or package containing test classes and select ' ', ORRun Optimized As: JUnit Test

Screenshot: Launching a Build with Test Optimization from the Context Menu

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 288

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Select an existing launch configuration from the Run Optimized dropdown, OR

Screenshot: Launching a Build with Test Optimization from the Drop-Down Menu

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 289

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Create a Run Optimized configuration and execute it from the configuration dialog.

Screenshot: Launching a Build with Test Optimization from the Configuration Dialog

 When the Run Optimized button is used, Clover will run the configuration that was most recently run
optimized.

Measuring Test Optimization Results

When Optimized tests are being run, the JUnit view displays additional info about savings (as shown in the
screenshot below).

Screenshot: Pop-up Notification of Time Savings With Test Optimization

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 290

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

After Optimized tests run, Clover saves a snapshot file with coverage information that is used to optimize the
following test runs.

This file may be deleted using the Delete Snapshot icon in the Coverage View (next to Delete Coverage
Recordings button; you need to select a project first).

 The ' ' button also clears the snapshot file.Delete Coverage Recordings

The Delete Snapshot icon is disabled when the selected project does not have the snapshot file.
Test Optimization would run all tests (no optimization) when the snapshot file is deleted or absent.

Test Optimization Settings

The list below shows the settings available for Test Optimization.

Show dialog when no tests need to be run: when Test Optimization reduces amount of tests to 0, display
a notification dialog. Otherwise JUnit silently does nothing.
Discard snapshot every X compiles: when enabled, snapshot is re-generated every X compiles. This is
the equivalent of Ant's ' ' setting (See).fullrunevery Clover-for-Ant documentation
Minimize tests: main functionality. When disabled Clover only reorders tests, all of them are always run.
Test reordering:

Do not reorder (means NOOP if Minimize Tests is also off)
Failing tests first: reorder tests so that the ones which failed the last time Optimized Test was run
are run first.
Random order.

Setting Global Preferences

Screenshot: Setting Global Preferences

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-optimized-selector

Documentation for Clover 4.0 291

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

These are global (workspace-scope) preferences of Test Optimization; they are used as a template for
per-launch configuration preferences, or used when launch configuration uses default settings.

Setting Per-launcher Preferences

Screenshot: Running Optimized Configurations

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 292

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Screenshot: The Run Optimized Drop-Down Menu

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 293

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

Allows overriding the workspace settings for single launch config.

Use default settings: when set, use the workspace (global) settings.
Copy defaults: copy workspace settings to current settings.

Configurations Unsuitable For Test Optimization

Unfortunately not all configurations are suitable for Test Optimization. Please see the following points for specific
details.

Limitations with Multi-Project Set-Ups

Clover does not aggregate data across projects, so it is not possible to detect changed sources in projects other
than the one the test is in. As a result, if your project contains tests that are dependent on other projects, any
change in those projects would not be detected by Test Optimization and some tests that should be run will
unfortunately be 'optimized' too aggressively, resulting in their removal.

For more information, see this JIRA issue: .CEP-297

Limitations with Test Suites

Clover does not recognise test suites as entities that should be optimized away.
As the result test suites are always run (never optimized).
If your test launch configuration includes both test suite and the test case (which is probably an incorrect
configuration), then the test case would be run twice (normal behavior) or once (via test suite) when the test
case is optimized away.

Resolution: Do not include test suites in launch configuration, add test cases directly.

For more information, see this JIRA issue: .CEP-299

Limitations with Testing Frameworks

Test Optimization is only supported with JUnit tests at this time.

Troubleshooting

To troubleshoot Test Optimization in Clover-for-Eclipse, check through the following solutions:

If Clover is disabled for the project or generally Clover does not work for the project;
Check the project icon has the nice green Clover overlay.
Check whether Coverage Explorer shows any coverage for the project.

If Clover has the test source settings wrong;
Check whether the Test Run Explorer shows any tests.

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com/browse/CEP-297
http://jira.atlassian.com/browse/CEP-299

Documentation for Clover 4.0 294

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

2.

3.

4.

Go to project Properties | Clover | Test Classes, make sure that either the Ant-style pattern or
source folder list selects all your test classes properly.

If Test Optimization does not work when your have tests in different project than the classes being tested;
This is a known issue. See this JIRA issue for more details: ().CEP-297

If your test case is run twice, or not optimized at all;
Clover does not support test suites. Make sure you don't try to run one, launch test cases directly (

).CEP-299

Next chapter: .8. Launching an Ant build from Eclipse

8. Launching an Ant build from Eclipse

Clover-for-Eclipse integrates with Eclipse's built-in Ant support and Ant execution. If you are using Ant with your
builds, this makes accessing Ant tasks easier and more convenient launching them from the command line.

The Clover-Eclipse Ant support allows users to do the following:

Use Clover Ant tasks without declaring a taskdef element.
Use Clover Ant tasks without needing an additional license file (license information is taken from that
entered in the plugin).
Get auto-complete support for Clover tasks when writing Ant build files within Eclipse.

Screenshot: The Auto-Complete Function for Clover Tasks in Clover-for-Eclipse

Next chapter: .9. Eclipse advanced topics

9. Eclipse advanced topics

Instrumenting RCP Application
Performance Tuning in Clover for Eclipse

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com/browse/CEP-297
http://jira.atlassian.com/browse/CEP-299

Documentation for Clover 4.0 295

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Instrumenting RCP Application

Running application inside Eclipse IDE (with Clover)
Instrumenting code
Running product

Running application in another Eclipse
Glossary
Instrumenting code
Exporting Plug-ins or Plug-in fragments
Exporting Features
Running plug-ins and features
Generating report

Running product outside Eclipse
Exporting Product
Approach #1: Instrument source code manually
Approach #2: Overwrite product's plugins by instrumented versions
Running product
Generating report
Sample workbench configuration

Appendix 1

Running application inside Eclipse IDE (with Clover)

Instrumenting code

Just right click on projects you wish to instrument and choose "Clover > Enable on this project" option. Clover
will:

add "Clover Pre-Java Builder" and "Clover Post-Java Builder" on Builders tab (in project properties);
typically it looks like this:

add CLOVER_RUNTIME variable on "Java Build Path / Libraries" tab
rebuild project

Running product

In order to run instrumented code you have to use button from tool bar. It will add Clover"Run with Clover as..."

Your project must use a Java Builder in order to be instrumented by Clover. If you're using other builders
for compilation (like Ant Builder) instead of Java Builder, your code won't be instrumented.

In such case, instrument sources manually before building them - for example by adding <clover-instr/>
or <clover-setup/> to your Ant's build.xml. See example in .Appendix 1

Note that having PDE builders like Plug-in Manifest Builder / Extension Point Schema Builder in addition
to Java Builder is OK, as they are just packaging compiled classes.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 296

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

jar to -Xbootclasspath.

Alternatively, if you wish to use "Run as..." (or other action like Debug, Profile) to run instrumented application,
define in box as presented below:-Xbootclasspath/a:/your/path/to/clover-runtime.jar VM Arguments

You can find clover-runtime.jar in <eclipse_dir>\plugins\com.atlassian.clover.eclipse.runtime_4.X.X
..vYYYYMMDD000000\clover-runtime.jar

(Usage of other clover*.jar files is discouraged, because they can have , build timedifferent content
stamp or instrumentation database version).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 297

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Running application in another Eclipse

This chapter describes a case, when code is instrumented in one Eclipse IDE and next features/plugins are
exported, installed and tested in another Eclipse installation .

This is more tricky, because you have to ensure that instrumented classes will be packaged into jar files. You
also have to change location of .clover.db

Glossary

Eclipse Test - instance where application is executed (typically, it's a pure Eclipse installation used for testing)

Eclipse IDE - instance where application is compiled, it has Clover plug-in installed

Instrumenting code

Run Eclipse IDE. Open Project Properties > Clover. Check the " box. On the "Enable Clover in this project "Instru
 tab in " box:mentation" "Initstring

select the radio button,"Custom value"
enter absolute path for Clover database
deselect the toggle."Relative to project dir"

Click OK and rebuild the project.

Exporting Plug-ins or Plug-in fragments

Right click on plug-in project, choose > / ."Export ..." "Plug-in Development" "Deployable plug-ins and fragments"
On tab make sure that the checkbox is selected. "Options" "Use class files compiled in the workspace"

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 298

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Exporting Features

Right click on feature project, choose > / . On "Export ..." "Plug-in Development" "Deployable features" "Options"
tab make sure that the checkbox is selected."Use class files compiled in the workspace"

Running plug-ins and features

Now, you can install these features or plug-ins into the Eclipse Test. Make sure that the (youclover-runtime.jar
can find it in) is available in Java <eclipse>\plugins\com.atlassian.clover.eclipse.runtime_version_number -Xboo

.tclasspath

Add this to your Eclipse Test file, for example:eclipse.ini

-vmargs
-Xbootclasspath/a:/path/to/eclipse-ide/plugins/com.atlassian.clover.ecli
pse.runtime_4.0.0.v20140711000000/clover-runtime.jar

Note that is necessary because all arguments listed after are being passed as arguments -vmargs -vmargs
for JVM, instead of arguments for Eclipse framework.

Generating report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 299

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

As during instrumentation the absolute path was used for Clover database, your Eclipse IDE should
automatically fetch coverage files so that you can see results in Coverage Explorer.

You can also generate report manually, using <clover-report> Ant task for instance. See the "report" target in
Appendix 1.

Running product outside Eclipse

Exporting Product

Unfortunately, exporting the whole product at once:

right click on project, choose "Export ..." > "Plug-in Development / Eclipse Product" or
open the MyProudct.product file and click "Use the Eclipse Product export wizard" from Overview tab.

will not work because the standard "Eclipse Product Export Wizard" does not use Builders defined in project
properties, but calls PDE Ant build scripts. As a consequence it bypasses the "Clover Pre/Post-Java Builder".

There are two ways to solve this:

Approach #1: Instrument source code manually

1) Use command line tool or Ant task to instrument sources manually - see script in CloverInstr clover-instr Appe
ndix 1

remember to put instrumented sources in another location, i.e. not into your original source folder

2) Open instrumented sources in Eclipse IDE.

Add the from clover-runtime.jar <eclipse_home>\plugins\com.atlassian.clover.eclipse.runtime_<version_number
 as external JAR to Java Build Path.>

 Do not add it as dependency in MANIFEST.MF as there's no reason to package this jar inside your
product - it's only for compilation. At runtime, the - will be used. Xbootclasspath

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 300

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Run Eclipse Product Export Wizard.

Approach #2: Overwrite product's plugins by instrumented versions

1) Manually export all plugins being part of your product - see (they willExporting Plug-ins or Plug-in fragments
contain instrumented classes).

2) Export product using "Eclipse Product Export Wizard" into some folder (it will contain un-instrumented
classes).

3) Overwrite plugins in the exported product folder by those exported manually.

 This is less convenient compared to Approach #1 as you have to export plugins one-by-one, but might be
needed if:

you have sources generated during build (XML schema bindings, for instance) and
you want to have them instrumented as well (which is usually not practised).

Running product

Make sure that the (you can find it in clover-runtime.jar <eclipse>\plugins\com.atlassian.clover.eclipse.runtime_<
) is available in Java . Add this to your product's file, for example:version_number> -Xbootclasspath config.ini

-vmargs
-Xbootclasspath/a:/path/to/eclipse-ide/plugins/com.atlassian.clover.ecli
pse.runtime_4.0.0.v20140711000000/clover-runtime.jar

Note that is necessary because all arguments listed after are being passed as arguments -vmargs -vmargs
for JVM, instead of arguments for Eclipse framework.

Generating report

As during instrumentation the absolute path was used for Clover database, your Eclipse IDE should
automatically fetch coverage files so that you can see results in Coverage Explorer.

You can also generate it manually e.g. using <clover-report> Ant task. See the "report" target in Appendix 1.

Sample workbench configuration

The diagram below shows how work with manually instrumented sources (Approach #1) can be organized. A
location of Clover database configured in Eclipse IDE as well as in Ant script which instruments sources is the
same and points to an absolute path. Thanks to this, after running product, coverage results can be fetched
automatically into Eclipse IDE #1.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 301

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Appendix 1

Sample Ant script which instruments all *.java files from and puts them into project.original.dir project.instrument
, preserving original directory structure. It copies also all non-java files as well.ed.dir

<project default="instrument">
 <property name="clover.jar" location="${user.home}/clover.jar"/>
 <property name="ant-contrib.jar"
location="${user.home}/ant-contrib-1.0b3.jar"/>
 <property name="project.original.dir" location="original_project"/>
 <property name="project.instrumented.dir" location="instr_project"/>
 <property name="project.clover.db"
location="${project.instrumented.dir}/.clover/clover.db"/>

 <taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>
 <taskdef resource="net/sf/antcontrib/antlib.xml"
classpath="${ant-contrib.jar}"/>

 <target name="_instrument-dir">
 <!-- Use double-slash for windows paths -->
 <propertyregex property="original.dir.quoted"
input="${project.original.dir}" regexp="\\" replace="\\\\\\\\" global="true"/>
 <propertyregex property="relative.dir" input="${source.dir}"
regexp="${original.dir.quoted}(.*)" select="\1"/>
 <echo message="Instrumenting ${source.dir} into
${project.instrumented.dir}${relative.dir}"/>
 <echo message="Clover database is ${project.clover.db}"/>
 <clover-instr destdir="${project.instrumented.dir}${relative.dir}"
initstring="${project.clover.db}">
 <fileset dir="${project.original.dir}${relative.dir}">
 <include name="**/*.java"/>
 </fileset>
 </clover-instr>
 </target>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 302

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 <target name="instrument">
 <!-- Cleanup from previous run -->
 <delete dir="${project.instrumented.dir}"/>
 <!-- Find all source directories, for each of them call clover-instr.
Please note that we cannot use sth like:
 <clover-instr srcdir="${project.original.dir}"
destdir="${project.instrumented.dir}" initstring="${project.clover.db}">
 directly, because clover-instr does not recreate original directory
structure, but puts everything
 under one destdir root.
 -->
 <foreach target="_instrument-dir" param="source.dir" inheritall="true"
inheritrefs="true">
 <path>
 <!-- Define all package roots here -->
 <dirset dir="${project.original.dir}">
 <include name="**/src"/>
 <include name="**/test"/>
 </dirset>
 </path>
 </foreach>

 <!-- Copy all other non-java files as well -->
 <echo message="Copying other files from ${project.original.dir} to
${project.instrumented.dir}"/>
 <copy todir="${project.instrumented.dir}">
 <fileset dir="${project.original.dir}">
 <exclude name="**/*.java"/>
 </fileset>
 </copy>

 <!-- Now we can build it under PDE. Don't even try to read instrumented
sources ;-) -->
 <echo message="INSTRUMENTATION DONE. Run Eclipse and open project from
${project.instrumented.dir}"/>
 </target>

 <target name="report">
 <clover-report initstring="${project.clover.db}">
 <current outfile="current.html">
 <format type="html"/>
 </current>
 <current outfile="current.xml">
 <format type="xml"/>
 </current>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 303

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 </clover-report>
 </target>
</project>

Performance Tuning in Clover for Eclipse

Since every project varies in size and speed, Clover may need to be configured to work best for your project.

Clover-for-Eclipse Memory Allocation

Tracking code coverage for a project, particularly per-test code coverage for large projects can consume a good
deal of memory. If things are running too slowly with Clover enabled, consider boosting the memory allocated to
your Eclipse installation.

If your workspace contains a lot of projects, we recommend you incrementally enable Clover on them rather than
enabling it on all of them at once. Doing it in stages will allow you to determine how many your current memory
settings can accommodate.

By default Clover-for-Eclipse will keep its memory usage as low as possible but this may cause code coverage
to take a bit longer to be updated after a test run. If you believe you have sufficient memory to load all the
per-test coverage data into memory and get faster coverage feedback, consider switching on the 'Keep per-test

' setting, as seen in the following screenshot:coverage data in memory

If you use Clover-for-Eclipse purely for Test Optimization purposes and not for coverage reporting, you can
reduce the granularity of Clover instrumentation from statement to method level. This will speed up
instrumentation times, compilation times and test run times. To make this change, click on a project in the
Coverage Explorer and alter its instrumentation level. A full rebuild is required after making this change.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 304

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.

Related Links

Clover Performance Tuning for Ant

Clover-for-Eclipse Installation Guide
Requirements
Known issues
Installation

1a. Installing the plug-in from the live Clover Eclipse update site
1b. Installing the plug-in from a downloaded archive of the Clover Eclipse update site
1c. Installing the plug-in from the Eclipse Marketplace
2. Installing the license

Uninstallation

Requirements

The Clover-for-Eclipse system requirements are as follows:

Eclipse Projects Your Eclipse projects must use the built-in Java Builder for compilation of source code.
We do not support AspectJ-based projects.

JDK Version

See Supported Platforms

Eclipse Version

Operating System

You need a valid Clover license file to run Clover. You can obtain a free 30 day evaluation license, purchase
a commercial license or apply for a free open source license at .http://www.atlassian.com

Known issues

Projects initially instrumented/built using an earlier Clover plugin version or build may appear as grey in
the Coverage Explorer. To resolve this, perform a clean build on your Clover-instrumented classes and
select "Yes" when asked to delete coverage data.

Installation

You can either install the Clover-for-Eclipse from the live Clover Eclipse update site, Eclipse Marketplace or from
a zipped archive downloaded manually.

1a. Installing the plug-in from the live Clover Eclipse update site

Select from the menu ."Help > Install New Software ..."
Click , enter in the field. Click ."Add..." http://update.atlassian.com/eclipse/clover "Location" "OK"

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Clover+Performance+Tuning
http://www.atlassian.com
http://update.atlassian.com/eclipse/clover

Documentation for Clover 4.0 305

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

3.
4.
5.
6.

a.
b.

1.
2.
3.
4.
5.
6.
7.

a.
b.

1.
2.
3.

4.

5.
6.

7.

8.
a.
b.

1.
2.
3.

4.

5.

1.
2.
3.

4.

Select the entry ."Clover <version> (Eclipse 3.6 - 4.4 and RAD 8.0 - 9.0)"
Deselect the checkbox for faster installation."Contact all update sites ... "
Click twice, select the radio button next to and click the ."Next" "I accept the license agreement" "Finish"
Installation process will start.

You will be asked to install unsigned content. Click ."OK"
You will be asked to restart Eclipse. Click to complete the installation."Restart now"

1b. Installing the plug-in from a downloaded archive of the Clover Eclipse update site

Download the most recent Clover Eclipse update site archive from the .Clover downloads page
Select from the menu ."Help > Install New Software ..."
Click , next click and point to the location of the downloaded archive. Click ."Add..." "Archive..." "OK"
Select the entry ."Clover (Eclipse 3.6 - 4.3. and RAD 8.0 - 9.0)"<version>
Deselect the checkbox for faster installation."Contact all update sites ... "
Click twice, select the radio button next to and click the ."Next" "I accept the license agreement" "Finish"
Installation process will start.

You will be asked to install unsigned content. Click ."OK"
You will be asked to restart Eclipse. Click to complete the installation."Restart now"

1c. Installing the plug-in from the Eclipse Marketplace

Select from the menu ."Help > Eclipse Marketplace ..."
On the tab, in the field type and click ."Search" "Find" "Clover" "Go"
You shall see a message Click on this link. "0 matches. Browse for more solutions."

 Clover is not listed in this dialogue due to license restrictions applied by Eclipse Marketplace.
An internal web browser view will open. Click the on a list of results."Atlassian Clover for Eclipse"

Plug-in page will open. Click the button."Install"
A dialogue with a list of features to install will open. Check that and are"Clover 4" "Clover 4 Ant Support"
selected and click ."Next"
A license agreement will be displayed. Select the radio button next to an"I accept the license agreement"
d click the ."Finish"
Installation process will start.

You will be asked to install unsigned content. Click ."OK"
You will be asked to restart Eclipse. Click to complete the installation."Restart now"

2. Installing the license

Obtain a valid trial, purchased or open source license from http://my.atlassian.com
Within Eclipse, select from the menu and click on ."Window > Preferences" "Clover > License"
Paste the contents of your license file into the license text area or select your license file by clicking "Load

...."
Click . The license summary should now display status, type and message consistent with the type"Apply"
of license you entered.
Click to close the window."OK"

Uninstallation

To uninstall the plug-in:

Select from the menu . "Help > About Eclipse > Installation Details"
Select "Installed Software" tab.
Find the Clover features in the list - there should be two: and . "Clover 4" "Clover 4 Ant Support"

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/download
http://my.atlassian.com

Documentation for Clover 4.0 306

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

4.
5.

1.
2.
3.

4.

5.

6.
7.

8.

1.

1.
2.
3.

4.

5.

6.
7.

8.

1.

2.
3.

4.

5.

Select both, right click and select . Click to confirm you want to proceed."Uninstall..." "Finish"
Uninstallation process will start. You will be asked if you want to restart Eclipse. Click ."Restart Now"

Installing Clover-for-Eclipse

Installation

1. Installing the plugin

You can either install the Clover-for-Eclipse from the live Clover Eclipse update site or from a zipped archive
downloaded manually.

1a. Installing the plugin from the live Clover Eclipse update site

In Eclipse 3.4 or Later:

Select from the menu "Help | Software Updates" to start the installation process.
Click "Available Software"
Select "Add Site..." and enter then click OK. This will pointhttp://update.atlassian.com/eclipse/clover
Eclipse to the Clover update site from where it will download the plugin and an entry to the sites in the
Expand the entry "http://update.atlassian.com/eclipse/clover" and its child entry "Clover 2.3.2" until you
see "Clover 2 (for Eclipse 3.2/3.3/3.4)" and "Clover 2 Ant Support (3.2/3.3/3.4)".
Click the checkboxes next to "Clover 2 (for Eclipse 3.2/3.3/3.4)" and "Clover 2 Ant Support (3.2/3.3/3.4)"
and then click "Install..."
The "Install" dialog should now show the two features to install. Click "Finish".
You may be asked if you agree to the license terms. If you agree, click the radio button next to 'I accept

' and click the "Next" button.the license agreement
Finally, you will be asked if you want to restart Eclipse after installing the plugin. Click "Yes" to restart and
complete the installation.

1b. Installing the plugin from a downloaded archive of the Clover Eclipse update site

Download the most recent Clover Eclipse update site archive from the Clover downloads page

In Eclipse 3.4 or Later:

Select from the menu "Help | Software Updates" to start the installation process.
Click "Available Software"
Select "Add Site...", click "Archive..." and point Eclipse to the location of the Clover Eclipse update site
archive. Click OK. This will point Eclipse to the Clover update site from where it will download the plugin
and an entry to the sites in the
Expand the entry that refers to the archive you've just added and then expand its child entry "Clover
2.3.2" until you see "Clover 2 (for Eclipse 3.2/3.3/3.4)" and "Clover 2 Ant Support (3.2/3.3/3.4)".
Click the checkboxes next to "Clover 2 (for Eclipse 3.2/3.3/3.4)" and "Clover 2 Ant Support (3.2/3.3/3.4)"
and then click "Install..."
The "Install" dialog should now show the two features to install. Click "Finish".
You may be asked if you agree to the license terms. If you agree, click the radio button next to 'I accept

' and click the "Next" button.the license agreement
Finally, you will be asked if you want to restart Eclipse after installing the plugin. Click "Yes" to restart and
complete the installation.

2. Installing the license

Obtain a valid trial, purchased or opensource license for Clover 2. Licenses can be obtained at http://my.a
tlassian.com
Within Eclipse, select from the menu "Window | Preferences" and click on Clover > License.
Paste the contents of your license file into the license text area or select your license file by clicking
"Load...".
Click Apply. The license summary should now display status, type and message consistent with the type
of license you entered.
Click OK to close the window.

http://creativecommons.org/licenses/by/2.5/au/
http://update.atlassian.com/eclipse/clover
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://my.atlassian.com
http://my.atlassian.com

Documentation for Clover 4.0 307

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.

4.
5.
6.

Uninstallation

In Eclipse 3.4:

To uninstall the plugin, from the Eclipse menu select "Help | Software Updates".
Select "Installed Software".
Find the Clover features in the list - there should be two: "Clover 2 (for Eclipse 3.2/3.3/3.4)" and "Clover 2
Ant Support (for Eclipse 3.2/3.3/3.4)".
Select both, right click and select "Uninstall...".
Click "Finish" to confirm you want to proceed with the uninstall and disable the features.
Finally, you will be asked if you want to restart Eclipse after installing the plugin. Click "Yes" to restart to
complete uninstallation.

Clover-for-Eclipse Upgrade Guide

General instructions

1. Upgrade Clover-for-Eclipse version

Click and select "Clover" and "Clover Ant Support" features Follow the wizard"Help -> Check for updates" .
instructions.

2. Update license key (optional)

Installing new license key is necessary when you're installing a Clover version released after end of support date
of your current license. Open the and paste a new key."Window -> Preferences -> Clover -> License"

3. Rebuild workspace (optional)

Clover's database format may change in newer versions. In such case you'll get a build error with a message
informing about database incompatibility. In such case you have to delete old database files - rebuild your
workspace and answer "Yes" on a question "You are doing a rebuild, do you want to delete the old coverage

.data for project ... ?"

Upgrading from specific releases

Please see the and the for version-specific upgradeClover Release Notes Clover-for-Eclipse Changelog
instructions.

Upgrading from Clover 3.3 to Clover 4.0

In order to upgrade from Clover 3.3 to Clover 4.0 you have to:

disable Clover on your projects -("Package Explorer -> context menu -> Clover -> Enable/Disable on...")
this is necessary to remove "Clover Pre-Java Builder" and "Clover Post-Java Builder",
uninstall previous version of Clover and next install the Clover-for-Eclipse 4.x (un-installation is
necessary because Clover's features and plugins have been renamed from to com.cenqua.*** com.atlassi

),an.***
enable Clover on your projects.

Clover-for-Eclipse Changelog
See also .Clover-for-Ant Changelog

Clover-for-Eclipse Changelog

Changes for the latest major version are as follows:

Changes in Clover-for-Eclipse 4.0.0

July 11, 2014

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 308

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
.4.0 Release Notes

Implemented features and fixes

T Key Summary P Status Fix Version/s

CLOV-1345 Apply ADG in the HTML report CLOSED 4.0.0

1 issue

Please also see the for all bugs fixed in the Clover product.Clover-for-Ant Changelog

Known bugs

T Key Summary P Fix Version/s Status

No issues found

Changes in Clover-for-Eclipse 3.3.0

March 31, 2014

This is a feature release with dedicated support for Spock framework and JUnit4 Parametrized Tests.

Please note that Clover-for-Eclipse plug-in does not support Groovy in the IDE (see the paSupported Platforms
ge), so you'll have to use Clover's Ant, Maven or Grails plug-in in order to instrument Spock tests.

Implemented features and fixes

T Key Summary P Status Fix Version/s

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA CLOSED 3.3.0

1 issue

Please also see the for all bugs fixed in the Clover product.Clover-for-Ant Changelog

Known bugs

T Key Summary P Fix Version/s Status

No issues found

Older versions

Looking for older versions? See .Clover-for-Eclipse Changelog for Clover 3.2

Changes in Clover-for-Eclipse 4.0.0

Changes in Clover-for-Eclipse 4.0.0

July 11, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
.4.0 Release Notes

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+++++++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%224.0.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Bug%29+and+priority+%3E%3D+Major+ORDER+BY+priority+desc++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+++++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.2.1%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Bug%29+and+priority+%3E%3D+Major+ORDER+BY+priority+desc++++&src=confmacro
https://confluence.atlassian.com/display/CLOVER032/Clover-for-Eclipse+Changelog

Documentation for Clover 4.0 309

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Implemented features and fixes

T Key Summary P Status Fix Version/s

CLOV-1345 Apply ADG in the HTML report CLOSED 4.0.0

1 issue

Please also see the for all bugs fixed in the Clover product.Clover-for-Ant Changelog

Known bugs

T Key Summary P Fix Version/s Status

No issues found

Changes in Clover-for-Eclipse 3.3.0

Changes in Clover-for-Eclipse 3.3.0

March 31, 2014

This is a feature release with dedicated support for Spock framework and JUnit4 Parametrized Tests.

Please note that Clover-for-Eclipse plug-in does not support Groovy in the IDE (see the paSupported Platforms
ge), so you'll have to use Clover's Ant, Maven or Grails plug-in in order to instrument Spock tests.

Implemented features and fixes

T Key Summary P Status Fix Version/s

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA CLOSED 3.3.0

1 issue

Please also see the for all bugs fixed in the Clover product.Clover-for-Ant Changelog

Known bugs

T Key Summary P Fix Version/s Status

No issues found

Clover-for-Eclipse Glossary of Terms
This page contains definitions of terms used in the Clover-for-Eclipse plugin documentation.

On this page:
Avg Method Cmp
Block Contexts
Clover Working Set
Cmp
Cmp Density
Columns
Coverage Explorer (view)
Coverage Explorer Column Chooser
Coverage Explorer Custom Column Builder
Coverage Cloud (report)
Coverage Report

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+++++++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%224.0.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Bug%29+and+priority+%3E%3D+Major+ORDER+BY+priority+desc++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%2C+Feature%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+++++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.2.1%22+AND+component+%3D+%22CEP+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Bug%29+and+priority+%3E%3D+Major+ORDER+BY+priority+desc++++&src=confmacro

Documentation for Clover 4.0 310

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Treemap (report)
Flush Policy (setting)
Initstring (setting)
Instrumentation
LOC
NC LOC
Perspective (Eclipse concept)
Project Explorer (view)
Summary Panel
Test Contributions (view)
Test Run Explorer (view)
Workspace (Eclipse setting)
Workbench (Eclipse concept)

Avg Method Cmp

The average method complexity of code in the given context.

Block Contexts

Refers to common Java coding constructs or idioms such as the body of if statements; static initialiser blocks; or
property style methods. These are pre-defined by Clover.

Clover Working Set

A specified set of files, directories and projects that Clover will report on. Especially useful when working with
large projects.

Cmp

Cyclomatic coMPlexity of code in the given context.

Cmp Density

The complexity density of code in the given context.

Columns

Individual data sources that comprise part of a chart, visualisation or report.

Coverage Explorer (view)

The Coverage Explorer allows you to view and control Clover's instrumentation of your Java projects, and shows
you the coverage statistics for each project based on recent test runs or application runs.

Coverage Explorer Column Chooser

A configuration screen that allows the user to set what is displayed in the Coverage Explorer, by selecting from
the 24 columns available in Clover. The Column Chooser can be summoned by selecting "Columns..." in the
Coverage Explorer view menu.

Coverage Explorer Custom Column Builder

A dialog that allows the user to define custom columns that show computed values from the data points used in
Clover's reporting framework.

Coverage Cloud (report)

A Clover report visualisation that prints class names to the screen, coloured to show their level of code coverage
and scaled in size to illustrate their complexity.

Coverage Report

Coverage reports are generated by Clover as PDF, HTML or XML, showing Clover's output in a readily
digestible format for the user. These reports can be generated for single or multiple projects.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 311

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Treemap (report)

A Clover report visualisation that shows packages and classes as coloured squares. The square's respective
colour indicates the level of code coverage and they are scaled in size to illustrate their complexity (largest is
most complex).

Flush Policy (setting)

The Flush Policy controls when Clover writes coverage data to disk as your application runs.

Initstring (setting)

This controls where the Clover plugin stores (and looks for) the coverage database.

Instrumentation

in order to track the code coverage of your projects, Clover must insert special code into your programs at
compilation time. This special code is collectively called instrumentation.

LOC

Lines Of Code (including comment lines).

NC LOC

Non-Commented Lines Of Code. Lines of code that contain comments are not counted in this metric, leaving
only the actual functioning code itself.

Perspective (Eclipse concept)

In the Eclipse IDE, each window in the desktop development environment contains one or more perspectives.
Perspectives are containers for views and editors which control the content of the navigation user interface and
controls.

Project Explorer (view)

In Eclipse, the Project Explorer view shows a hierarchical view of the resources in the Workbench.

Summary Panel

The Summary Panel is a set of metrics that are displayed alongside the tree for the selected project, package,
file, class or method in the tree.

Test Contributions (view)

The Test Contributions view shows unit tests and methods that generated coverage for the currently opened and
selected Java source file.

Test Run Explorer (view)

The Test Run Explorer view, like several popular plugins such as the JUnit Plugin or TestNG Plugin, lets you
explore your recently run tests - showing whether they passed or failed, their duration and any error messages
that they generated. Clover-for-Eclipse takes this one step further and allows you to explore the code coverage
caused by an individual test, a test class, a package or even your entire project.

Workspace (Eclipse setting)

The ' ' page is a configuration screen that is used to access IDE preferences in Eclipse.General > Workspace

Workbench (Eclipse concept)

A general term for the Eclipse desktop development environment.

Clover-for-Eclipse FAQ

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 312

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover Eclipse Plugin FAQ

I only need instrumented classes for unit testing and I don't want to risk publishing them to my
production environment. How can I do this with Clover? — Clover supports writing both
instrumented and uninstrumented class files to different directories during a build.
Is Clover supported on IBM's RAD? — Yes, IBM RAD is supported. See Supported Platforms page
for more details.
I store my plugins and features in an Eclipse extension area. Does Clover support this? — The
"Clover 4" and "Clover 4 Ant Support" features can be placed in any extension location.
Why can I only see coverage data for the last test case I executed? — Clover can be set to only
display the coverage information gathered since your last compile — full build or auto build. The default
behaviour is to include all coverage data found.

Clover-for-IDEA

Clover-for-IDEA Documentation

What is Clover-for-IDEA?

Clover-for-IDEA brings the industry-leading
code coverage tool, to theAtlassian Clover
IntelliJ IDEA integrated development
environment. Clover-for-IDEA allows you to
easily measure the coverage of your unit
tests, enabling targeted work in unit testing
resulting in stability and enhanced quality
code with maximal efficiency of effort.

Getting Started with Clover for IDEA

Installation Guide

Quick Start Guide

Changelog for latest version of
Clover-for-IDEA

Using Clover for IDEA

User's Guide

Installation & Configuration Guide

Resources and Support

Atlassian Answers

FAQ

Technical Support

Offline Documentation

You can download the Clover documentation
in PDF, HTML or XML format.

Recently Updated

Clover Road Map

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/clover/
https://answers.atlassian.com/tags/clover
http://support.atlassian.com
https://confluence.atlassian.com/display/ALLDOC

Documentation for Clover 4.0 313

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Aug 12, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Upgrading third party libraries
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Updating optimization snapshot file
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Hacking Clover
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 4 - Test Optimization Tutorial
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 3 - Automating Coverage Checks
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 2 - Historical Reporting
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 1 - Measuring Coverage
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover 4.0 Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

A side-by-side comparison of the Classic and the ADG HTML report
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-IDEA User's Guide
This page contains all user documentation for Clover-for-IDEA. Click a heading in the table below to jump to that
section.

On this page:

Overview
Using the plugin
FAQ

Overview

The Clover IDEA Plugin allows you to instrument your Java code easily from within the Java IDE,IntelliJ IDEA
and then view your coverage results inside IDEA.

Screenshot: Clover for IDEA Plugin

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313465693&selectedPageVersions=17&selectedPageVersions=16
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=310379086&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317949806&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313459430&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=171966945&selectedPageVersions=51&selectedPageVersions=50
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=73793592&selectedPageVersions=14&selectedPageVersions=13
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71600301&selectedPageVersions=48&selectedPageVersions=47
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=72548380&selectedPageVersions=44&selectedPageVersions=43
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=624198431&selectedPageVersions=7&selectedPageVersions=6
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=632980339&selectedPageVersions=4&selectedPageVersions=3
http://www.intellij.com/idea/

Documentation for Clover 4.0 314

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Using the plugin

We recommend starting your adventure with Clover for IDEA with a following lecture:

1. Clover for IDEA in 10 minutes

If you need more details how given features work, or how to efficiently work with Clover, you can read about:

2. Exploration of coverage in IDEA
3. Exploration of test results in IDEA
4. Scope of instrumentation in IDEA
5. IDEA configuration options
6. Generating reports in IDEA
7. Test Optimization for IDEA

For more advanced topics, like performance tuning, see:

9. IDEA Advanced topics

FAQ

See the . You can also search posts with the tag on .Clover for IDEA Plugin FAQ clover Atlassian Answers

1. Clover for IDEA in 10 minutes

Getting Started

http://creativecommons.org/licenses/by/2.5/au/
https://answers.atlassian.com/

Documentation for Clover 4.0 315

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

3.
4.
5.

6.

7.

8.

9.

10.

This getting started guide will take you through the steps required to generate Clover coverage for your project.

Ensure that the clover plugin jar has been added to your project library path.
Enable Clover, by selecting the 'Enable Clover' check box in the "File | Settings | Project | Clover"
interface.

Turn on clover instrumentation by selecting the toolbar item.
Rebuild your project using any of the build mechanisms provided by IDEA.
Run your project by running the unit tests or some other means.

Refresh the latest coverage data by clicking the toolbar item.

Highlight coverage in the source code editor by selecting the toolbar item.
Available highlighting options:

 highlight covered code (in green) and code with no coverage (in red),

 only highlight code with no coverage,

 turn code coverage highlighting off.

 this enables little gray and green clovers in package explorer. These indicate the toggled state of the
exclusion annotation.

When option is selected only coverage from passed unit tests contributes to the coverage
percentage.

View the TreeMap report for the current project using the button.

View the Cloud report for current project using button.

Congratulations! You now know basics of plugin - enough to start your daily work with it. If youClover for IDEA
want to learn more, read the chapter.2. Exploration of coverage in IDEA

2. Exploration of coverage in IDEA

Viewing Coverage Results

Clover will record the code coverage information each time you run your application or a unit-test. This coverage
information is available for viewing using IDEA.

The coverage information can be browsed using the window. The upper portion of the tool window"Cloverage"
contains a project class browser with inline coverage information:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 316

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The tool bar at the top of the browser contains the following buttons:

Flatten Packages. With this selected, only concrete packages are shown in the browser.

Autoscroll to Source. With this selected, a single click on a class in the browser will load the
corresponding source file in an editor pane, with coverage info overlaid.

Autoscroll from Source. With this selected, the coverage browser will track the currently active
source file in the editor pane.

Always view package in the Cloud report. When this is selected the Cloud view will automatically
show a package selected in this tree.

Show Coverage Summary. With this selected, the Coverage metrics (see below) will be visible.

Generate Report. Launches a dialog to create a coverage report in HTML, XML or PDF format.

Cloud report for selected package. Opens Cloud report for selected package.

Refresh. Reloads coverage data.

Clean Coverage. Cleans gathered coverage data without deleting the instrumentation database.

Delete. Delete the current coverage database.

Set Context Filter. Launches a dialog to set the context filter.

Hide Fully Covered Elements. Removes elements with 100% coverage from view.

Set Coverage Scope. Choose which classes should be included in the Clover
Coverage View - only application classes, only test classes or all classes.

Coverage tree map reports

The coverage tree map report allows simultaneous comparison of classes and package by complexity and by
code coverage. The tree map is divided by a package (labelled) and then further divided by a class (unlabelled).
The size of the package or the class indicates its complexity (larger squares indicate great complexity, while
smaller squares indicate less complexity). Colours indicate the level of coverage, as follows:

Bright green (most covered)
Dark green (more coverage)
Black (around 50% coverage)
Dark Red (little coverage)
Bright Red (uncovered)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 317

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The percentage shown in the yellow box is the code coverage for the class currently under the mouse.

View the TreeMap report for current project using the button.

Setting Context Filters

The types of classes you want included in the Clover Coverage View can be set with Context Filters:

Screenshot: Setting Context Filters

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 318

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Using the Tool Window

The lower portion of the Tool Window contains various Metrics for the currently selected node in the browser:

Screenshot: Clover Tool Window Summary

Showing Coverage with Annotations

In addition, the plugin can annotate the Java code with the coverage information. This can be turned on by

pressing the Show Coverage toolbar button.

Screenshot: Annotated Java Code

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 319

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If a source file has changed since a Clover build, then a warning will be displayed alerting you to fact that the
inline coverage information may not be accurate. The coverage highlighting will be yellow, rather than the red
shown above.

Now you perfectly know how your application is covered. But how to efficiently navigate between tests and
application code? Read the 3. Exploration of test results in IDEA chapter.

3. Exploration of test results in IDEA

Test Runs Explorer

The Test Runs Explorer displays recently run tests in your Clover-instrumented project.

The upper panel displays test cases as a flat list (), grouped by package () or by source root folder ().

The lower panel displays classes and methods covered by the test case selected in the upper panel. Two
metrics are displayed for each class and method:

Contributed Coverage indicates the percentage of statements that have been covered by selected test
case,
Unique Coverage indicates the percentage of statements that have been covered by selected test case

.only

If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh Button in the
Main Toolbar or the Clover Tool Window to see the updated coverage information.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 320

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Unique Actions in Test Run Explorer

 / / : Click to choose test cases layout.
 : Toggle calculating test coverage to display in the upper panel. If enabled, the plugin will provide

information about given test contribution to the selected target scope (see below). Note that enabling this
option seriously slows down the Clover database refresh.
Target scope: Only tests touching selected scope would be shown.

All tests: All recorded tests in the project,
File tests: All tests touching the currently displayed file,
Class / Method / Statement at cursor: All tests involving the class, method or statement under the
cursor, respectively.

Select In -> Clover (Alt-F1 menu)

It is possible to view currently selected element in Clover using the Alt-F1 menu.

If the cursor is inside a recognized test case, it would be displayed in Test Runs Explorer, listing methods
touched by the test in the lower panel.
Otherwise the element under cursor is displayed in the Coverage view.

You have already learned how to navigate through code coverage and test results. But don't you have a feeling

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 321

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

that your coverage reports could be more accurate when focused on areas of your application?really important
If you do so, don't hesitate to read to learn how to configure instrumentation4. Scope of instrumentation in IDEA
scope from whole project down to a single line of code.

4. Scope of instrumentation in IDEA

Clover provides many ways to fine-tune instrumentation scope, which gives you an ability to concentrate your
work on the most important code.

Enabling and disabling Clover for a project
Enabling and disabling build with Clover
Excluding and including modules
Excluding and including packages
Excluding and including files
Excluding certain blocks of code
Excluding methods and statements matching regular expression
Excluding arbitrary lines of code
Showing Clover coverage annotations in Java source editors

Enabling and disabling Clover for a project

If you want to completely disable Clover support for a project (and remove all Clover data etc), then open "File >
 and deselect the Settings > Project Settings > Clover" "Enable Clover" checkbox.

Enabling and disabling build with Clover

In order to track the code coverage of your projects, Clover must insert special code into your program at
compilation time - called instrumentation - to record this coverage. When Clover is enabled on your project,
Clover will automatically perform this task for every file you compile in the project. You can tell Clover not to
instrument your project by clicking "Toggle build with Clover" button (on a main bar).

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 322

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding and including modules

Right click on a module in Project view and select from context"Exclude module from Clover instrumentation"
menu.

Excluding and including packages

Right click on a package in Project view, select and next one of "Change exclusion" "Include ..." / "Exclude ..." /
 from context menu."Edit settings ..."

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 323

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 324

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding and including files

Right click on a file in Project view, select and next one of "Change exclusion" "Include ..." / "Exclude ..." / "Edit
 from context menu.settings ..."

Excluding certain blocks of code

Open page. Open tab. "File > Settings > Project Settings > Clover" "Contexts"

In the box you can choose Java language constructs or coding patterns to be excluded."Built-in context filters"
The most interesting are:

assert statements
catch body
finally body
private methods (all methods having private keyword)
property methods (all methods having name like getXyz() / setXyz() / isXyz(), being public and having no
arguments for isXyz()/getXyz())

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 325

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Excluding methods and statements matching regular expression

Open page. Open tab."File > Settings > Project Settings > Clover" "Contexts"

In the you can define regular expressions for method signatures and statements."Custom Contexts" box

Excluding arbitrary lines of code

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 326

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Put "///CLOVER:OFF" and "///CLOVER:ON" in source code (note that three slashes are used) to exclude given
sections.

Showing Clover coverage annotations in Java source editors

If you wish to temporarily disable the red/green code coverage annotations in your Java source editors (but wish
to continue using Clover on your projects), you can simple toggle one of three toggles:

"Turn on coverage highlight"
"Turn on coverage highlight for uncovered code only"
"Turn off coverage highlight"

These buttons are available on main menu bar.

Now you have your project instrumentation tuned to your needs. Are you looking for more tweaks? Read the 5.
 chapter.IDEA configuration options

5. IDEA configuration options

Configuration Options

Compilation Options

Configuration options for Clover are accessible on the Clover panel of the Project Properties dialog. The first Tab
on this panel provides compilation options:

Screenshot: Clover for IDEA Compilation Options

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 327

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Initstring

This section controls where the Clover coverage database will be stored. Select 'Automatic' to have Clover
manage this location for you (relative to your project directory). Select 'User Specified' to nominate the path to
the Clover coverage database. This is useful if you want to use the plugin in conjunction with an Ant build that
already sets the location of the Clover coverage database.

Flush Policy

The Flush Policy controls how Clover writes coverage data to disk at runtime. See .Flush Policies

Instrumentation

Includes / Excludes

Allows you to specify a comma separated list of set of Ant Patternsets that describe which files to include and
exclude in instrumentation. These options are the same as those described in the task. You can<clover-setup>
also specify whether source in test folders should be also instrumented.

For example, by using an "Excludes" value of _**/remote/*.java _ you will stop instrumentation of files in the
"remote" folder of your project.

It is now possible to change exclusion/inclusion patterns directly from the Project Explorer.
Right click on a package or file, click the Change Exclusion context menu and select whether a pattern
corresponding to the selected element should be added (or removed) from your includes or excludes list.

Files in the Project Explorer are annotated by gray or green clover when they are currently excluded or included
by the current Clover configuration. A package is annotated when it is explicitly excluded or included.

Screenshot: Right-Click Context Menu for Setting Includes and Excludes

When your Includes/Excludes are edited manually via the settings, the package annotation may not
work correctly (manual pattern may be not recognized), but the file annotation always reflects what the
Clover instrumenter will use.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 328

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Instrument test source folders ... - when selected, sources from test folders will be instrumented and
treated as test code

Instrument lambda functions: whether Java 8 lambda functions shall be instrumented. If instrumented,
they're treated like normal methods (and can be shown in HTML report and considered in code metrics,
for example). Possible values:

none - do not instrument lambda functions,
expression - instrument lambdas in expression-like form, e.g. "(a, b) -> a + b",
block - instrument lambdas in code blocks, e.g. "(a, b) -> { return a + b; }"
all - instrument all lambda functions.

 Due to Clover's restrictions related with code instrumentation and javac compiler's type inference
capabilities, you may get compilation errors when expression-like lambda functions are passed to generic
methods or types. In such case disable instrumentation of expression-like form (i.e. use the or none block
setting). See the Knowledge Base article for moreJava 8 code instrumented by Clover fails to compile
details.

Rebuild Policy

The Clover database becomes obsolete after certain operations (such as toggling). TheBuild with Clover
Rebuild Policy setting allows defining the plugin's behavior in the case of such an event.

Ask: The plugin will show a dialog window asking for confirmation.
Rebuild Immediately: The plugin will rebuild the project automatically, without asking the user.
Never Rebuild Automatically: The plugin will neither rebuild nor display a dialog — with this setting the
user is responsible for rebuilding the project manually.

View Options

The second Tab on the configuration panel provides view options;

Screenshot: Clover for IDEA View Options

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVERKB/Java+8+code+instrumented+by+Clover+fails+to+compile

Documentation for Clover 4.0 329

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Refresh Policy

The Refresh Policy controls how the Clover Plugin monitors the Coverage Database for new data.

"Manual" means that you have to click button to refresh the coverage data.
"Automatic" means that the Clover Plugin will refresh the database on:

project open,
finished compilation,
termination of unit test or application run.

"Periodically" means that the Clover Plugin will periodically check for new coverage data for you.

General

Allows you to customize where coverage data is displayed within the IntelliJ IDE. Gutter marks appear in the left
hand gutter of the Java Source Editor. Source highlights appear directly over your source code. Shortcut marks
appear in the right hand gutter and allow you to navigate directly to uncovered regions of code.

Span

See .Using Spans

Per-test Coverage Data

Per-test coverage can be disabled to boost performance. If you disable this feature, the following information will
not be available:

Test results.
Code has been uniquely covered by specific tests.
Code has been covered by failed tests only.

However, the coverage data will load load faster as a result.

Source Highlighting

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 330

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Allows you to fine tune the colours used Clover in its coverage reporting. The 'highlight colour' for each item is
used for Source Highlights and the 'stripe colour' for each item is used for Gutter and Shortcut marks. You can
click on a given colour to change it.

Filter Options

The third Tab on the configuration panel provides filter options;

Screenshot: Clover for IDEA Filter Options

Built-in Context Filters

Allows you to specify contexts to when viewing coverage information. For example, selecting the ignore finally
 context will remove 'finally' block bodies ('block' syntactic constructs in the Java language) from thebody

reported coverage. For more information, see in the Clover Core documentation.Coverage Contexts

Custom Contexts

This allow you to define custom contexts to when viewing coverage information.ignore

Working with regexp filters:

Use , or to Create, Delete or Copy respectively the selected filter.
All new and edited regexp filters will be shown in 'blue', indicating that they are currently unavailable.

To make a new/edited filter active, you need to delete the existing coverage database using the butto
n and rebuild your project/module.

See for more information.Coverage Contexts

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 331

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Example: Creating a regexp context filter

For the sake of this example, let us assume that we want to remove all private methods from the coverage
reports. How would we go about this?

Open the configuration panel "Settings | Clover | Filters".

Select to create a new Regexp Context Filter.
Set the name to private.
Since we are creating this filter to filter private 'methods', specify the Method type.
We now need to define regular expression that will match all private method signatures. That is, a regexp
that will match any method with the private modifier. An example of such a regexp is (.*)?private .*. Enter
this regexp in the regexp field.
You will notice that the name of this new filter appears in blue. Blue is used to indicate that the filter is

either new or recently edited and therefore 'unavailable'. To make this new filter available, select from
the Main Toolbar and recompile your project. Once active, you will notice the private filter appear in the
Context Filter Dialog. You will now be able to filter private methods out of your Clover coverage
calculations and reports.

Now you have tweaked and hacked Clover according to your developer needs. But you would like to share
information about code coverage with you colleagues or present it to management? If yes, read next chapter: 6.

.Generating reports in IDEA

Clover-for-IDEA Auto-Updates

Clover-for-IDEA can check whether a newer version of the application is available with its ' ' feature.Auto Update

To configure this setting in IDEA, open ' ', ' ', ' ', ' '.Settings IDE Settings Clover Auto Update

You can select the option ' '. Another setting, 'Automatically check for new versions of Clover plugin Include
' allows you to see information about upcoming releases ofnot yet released milestone versions

Clover-for-IDEA. Once configured, the plugin will do a daily check for a new version of the program.

You can check for the newest version by clicking ' '. You can also update the program from a specificCheck now
location by clicking ' '.Download from URL

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 332

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

When an update to Clover-for-IDEA is available, a blinking Clover icon appears on the IDEA status bar:

You can click this icon, which will produce a dialog window showing new version information. You can also
choose to upgrade Clover-for-IDEA directly from that window.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 333

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

6. Generating reports in IDEA

Introduction
Generating a Report

Select an Output Format
Configure General Settings for the Report
Configure context filters
Finalise the Report

Opening the Generated Report

Introduction

The Clover for IDEA plugin allows you to generate HTML, PDF or XML reports for your project.

Generating a Report

To create a report, open the window and click on the button. The ' "Cloverage" "Generate Clover Report" Genera
' dialog opens.te Coverage Report

Select an Output Format

For your report, you can select an output format of HTML, PDF or XML. To select the desired output format, click
the corresponding radio button in the ' ' dialog and click ' '. Generate Coverage Report Next

Configure General Settings for the Report

Your report can make use of the following settings:

Setting Default Description

Report Title <project
name>
Coverage
Report

Report title.

Output Directory <project
dir>\report\html

Directory where report will be written to. In case when report already
exists in this location, appropriate warning will be displayed.

Include sources
(only for HTML
reports)

True Whether to include source code in the HTML reports. Not including
source will mean users can't see per-line coverage information but
report generation will run faster.

Include line info
(only for XML
reports)

False Whether line by line coverage information is added to the report.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 334

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Include failed test
coverage (only for
HTML reports)

True Tests from failed tests are included by default but can be excluded if
they wish to discount this as worthy of being reported.

Use current filter
settings

False If the user un-checks this they will be given the opportunity to set a
custom context.

Configure context filters

Filter configuration page is only shown if you choose not to accept default filter settings. This lets you select any
of the predefined pre-defined filters.

Finalise the Report

Clicking ' ' will start the report generation process. Progress will be displayed on status bar.Finish

Opening the Generated Report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 335

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

When report generation is complete, a pop-up will display a location of generated report. You have to open this
report manually.

Sample PDF Report

Next chapter: .7. Test Optimization for IDEA

7. Test Optimization for IDEA

This page explains how to set up Clover's Test Optimization feature in the IDEA development environment.

On this page:

Before You Begin
Launching Test Optimization
Measuring Test Optimization Results
Test Optimization Settings

Setting Global Preferences
Setting Per-launcher Preferences

Configurations Unsuitable For Test Optimization
Limitations with Test Suites
Limitation with test methods

Troubleshooting

Before You Begin

Before using Test Optimization with Clover-for-IDEA, be aware of the following.

Test Optimization is available as a ' ' command, similar to ' ' or ' '.Run Optimized Run Debug
Test Optimization supports JUnit launch configurations only.
Ensure you have Clover enabled on the project; when there is no Clover instrumentation, there is no Test
Optimization.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 336

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Launching Test Optimization

To establish Test Optimization in Clover-for-IDEA, carry out one of the following actions:

Right-click on a folder or package containing test classes and select ' ', ORRun Optimized

Screen shot: launching a build with test optimization from the context menu

Select an existing launch configuration in the drop-down menu and press icon.Run Configurations

Screenshot: Launching a Build with Test Optimization from the Drop-Down Menu

Measuring Test Optimization Results

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 337

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

When optimized tests are being run, Clover displays additional information about it.

After Optimized tests run, Clover saves a snapshot file with coverage information that is used to optimize the

following test runs. This file may be deleted using the Delete Snapshot icon in the Clover tool bar. The
Delete Snapshot icon is invisible when the project does not have the snapshot file. Test Optimization would run
all tests (no optimization) when the snapshot file is deleted or absent.

Test Optimization Settings

The list below shows the settings available for Test Optimization.

Discard snapshot every X compiles: When enabled, snapshot is re-generated every X compiles. This is
the equivalent of Ant's ' ' setting (See).fullrunevery Clover-for-Ant documentation
Minimize tests: main functionality. When disabled Clover only reorders tests, all of them are always run.
Test reordering:

Do not reorder (means NOOP if Minimize Tests is also off)
Failing tests first: Re-order tests so that the ones which failed (the last time Optimized Test was
run) are run first.
Random order.

Setting Global Preferences

Screenshot: Setting Global Preferences

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/clover-optimized-selector

Documentation for Clover 4.0 338

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

These are global (IDE-scope) preferences of Test Optimization where it is defined how Clover notifies about
empty test runs, i.e. ones that have all tests optimized out.

Display a dialog: Shows a dialog box that requires the user to close it manually before test run can
proceed,
Display a balloon: Pops up a notification balloon.

Setting Per-launcher Preferences

Screenshot: Running Optimized Configurations

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 339

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Test Optimization specific configuration options for specific JUnit configurations.
The defaults copied to new configurations may be set using Edit Defaults button.

Configurations Unsuitable For Test Optimization

Unfortunately not all configurations are suitable for Test Optimization. Please see the following points for specific
details.

Limitations with Test Suites

Clover does not recognise test suites as entities that should be optimized away.
As the result test suites are always run (never optimized).
If your test launch configuration includes both test suite and the test case (which is probably an incorrect
configuration), then the test case would be run twice (normal behavior) or once (via test suite) when the test
case is optimized away.

Resolution: Do not include test suites in launch configuration, add test cases directly.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 340

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

1.
2.

3.

For more information, see this JIRA issue: .CIJ-249

Limitation with test methods

Due to bug , in case when you execute optimized run and next add new test method to a class, suchCLOV-1084
class will be always executed in next optimized runs. In order to fix it, you have to delete optimization snapshot
(see button in tool bar menu).

Troubleshooting

To troubleshoot Test Optimization in Clover-for-IDEA, check through the following solutions:

If Clover is disabled for the project or generally Clover does not work for the project;
Ensure that the Clover icons are visible.
Check whether Coverage Explorer shows any coverage for the project.

If Clover has the test source settings wrong;
Check whether the Test Runs tool window shows any tests.
Ensure that Clover | Compilation | option is enabled.Instrument test source folders

If your test case is run twice, or not optimized at all;
Clover does not support test suites. Make sure you don't try to run one, launch test cases directly (

).CIJ-249

Next chapter: .9. IDEA Advanced topics

8. Launching Ant build from IDEA

9. IDEA Advanced topics

Performance Tuning in Clover for IDEA

Performance Tuning in Clover for IDEA

Boosting Allocated Memory

Tracking code coverage for a project, particularly per-test code coverage for large projects can consume a good
deal of memory. If things are running a bit slowly with Clover enabled, consider tboosting the allocated memory
o your IDEA installation.

Clover-for-IDEA Installation Guide

Installing the plugin from IDEA (recommended)

The easiest way to install Clover-for-IDEA is to select it from IDEA's plugin menu.

Launch IntelliJ IDEA.
Go to ' '. Select 'Atlassian Clover forFile > Settings > IDE Settings > Plugins > Browse repositories
IDEA' and click 'Install plugin'.
Close and re-start IDEA.

You can now begin .using Clover for IDEA

Screen shot: installing Clover from the IDEA plugin menu

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com/browse/CIJ-249
https://jira.atlassian.com/browse/CLOV-1084
http://jira.atlassian.com/browse/CIJ-249
https://developer.atlassian.com/display/DOCS/Allocating+more+memory+to+IDEA

Documentation for Clover 4.0 341

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

a.
b.
c.

3.
a.
b.
c.

4.

Installing the plugin manually

You can download the Clover-for-IDEA plugin from and install it manually as follows:Atlassian Downloads

Shut down any running instances of IDEA.
Remove any previous versions of the the Clover-for-IDEA plugin .jar file from the following plugin
installation locations:

IDEA_HOME/plugins (all platforms)
IDEA_HOME/config/plugins (all platforms excepting Mac OS X)
USER_HOME/Library/Application\ Support/IntelliJIDEA70 (Mac OS X only)

Copy the downloaded .jar file into the relevant location for your operating system:
IDEA_HOME/plugins (all platforms)
IDEA_HOME/config/plugins (all platforms excepting Mac OS X)
USER_HOME/Library/Application\ Support/IntelliJIDEA70 (Mac OS X only - create the directory if it
doesn't exist)

Re-start IDEA.

You will need a valid license to activate your plugin.

Download your clover.license file from . Evaluation licenses are availablehttp://www.atlassian.com/clover/
free of charge.
Open the Clover license dialog in IDEA. Go to 'File > Settings > IDE Settings > Clover > Clover

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/clover/

Documentation for Clover 4.0 342

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

', click ' ' and select the 'clover.license' file you just downloaded.License Load

Screen shot: the Clover license dialog in IDEA

Configuring compiler settings

Enabling the "external build" feature

Open the page.File > Settings > Project Settings > Compiler

IntelliJ IDEA 12
JetBrains IDEA has a new compiler feature named "external build", which is enabled by default in12.0
project settings (> toggle). The IDEAFile > Settings > Project Settings > Compiler "Use external build"
12 is supported since Clover version 3.1.8, however the support for "external build" feature is available
since Clover version and IDEA . 3.1.12 12.1.1 For older versions, i.e. the combination of Clover
3.1.8-3.1.12 and IDEA 12.0.0-12.1.0 please keep the "external build" feature disabled.

IntelliJ IDEA 13
In the IDEA the "external build" feature has become default setting and thus there's no 'Use13.0
external build' toggle available.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 343

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

3.

Use the following state for toggles:

 - it can be either enabled (the new IDEA12 feature is used) or disabled (the "classic"Use external build
IDEA build is used)

- it's strongly recommended to disable this option; enabling it causes frequentMake project automatically
compilation and faster growth of Clover database, which might affect performance

 - it be disabled; Clover does not support parallel build;Compile independent modules in parallel must
follow the for future updatesCLOV-1293

Known Issues

If you are using the Maven build tool, you should avoid using the same IntelliJ output directory as Maven
does. As Maven uses the and directories, avoid specifyingtarget/classes target/test-classes
these ones. The location for IntelliJ should also be distinct from that used by Maven.clover.db

Uninstalling the Plugin

The easiest way to uninstall it is via ' '. Just select the Clover IDEA Plugin fromFile > Settings > IDE > Plugins
the list and click ' '. The removal will take place after you restart IDEA.Uninstall Plugin

To uninstall Clover-for-IDEA manually:

Shut down any running instances of IDEA.
Delete the 'clover-idea.jar' file from its installation directory, either IDEA_HOME/config/plugins (all
platforms), IDEA_HOME/plugins (all platforms except Mac OS X) or USER_HOME/Library/Application\
Support/IntelliJIDEA70 (Mac OS X only)
Restart IDEA.

Clover-for-IDEA Upgrade Guide

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1293

Documentation for Clover 4.0 344

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.

1.
2.
3.

General instructions

By default Clover automatically checks for updates. When new version becomes available, the Clover icon will
blink in the status bar. In order to update:

Click on the blinking Clover icon.
An update dialog will pop up. Click 'Yes'.
Restart IDEA after installation.

Screen shot: the update dialog.

In order to update the plugin manually:

Open 'File > Settings > IDE Settings > Plugins > Browse repositories'.
Find 'Atlassian Clover for IDEA' and click 'Update plugin':
Restart IDEA after installation.

Screen shot: the 'Browse Repositories' dialog.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 345

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading from specific releases

Please see the and the for version-specific upgradeClover Release Notes Clover-for-IDEA Changelog
instructions.

Clover-for-IDEA Changelog
Please also refer to the .Clover-for-Ant Changelog

Clover-for-IDEA Changelog

The changes for the latest versions are as follows:

Changes in Clover-for-IDEA 4.0.0

July 11, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
.4.0 Release Notes

Implemented features and fixes

T Key Summary P

CLOV-1345 Apply ADG in the HTML report

1 issue

See also the .Clover-for-Ant Changelog

Known major bugs

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22CIJ+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++++++&src=confmacro

Documentation for Clover 4.0 346

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

T Key Summary P Fix Version/s Status

No issues found

Changes in Clover-for-IDEA 3.3.0

March 31, 2014

This is a feature release with a dedicated support for Spock framework and JUnit4 Parameterized Tests.

Please note that Clover-for-IDEA plug-in does not support Groovy in the IDE (see the pageSupported Platforms
), so you'll have to use Clover's Ant, Maven or Grails plug-in in order to instrument Spock tests.

Implemented features and fixes

T Key Summary P

CLOV-1462 ClassNotFoundException when running tests in IDEA 13.1 RC with Clover enabled

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA

CLOV-1441 Clover plugin doesn't load on IDEA 13 Startup

3 issues

See also the .Clover-for-Ant Changelog

Known major bugs

T Key Summary P Fix Version/s Status

No issues found

Older versions

Looking for older versions? See .Clover-for-IDEA Changelog for Clover 3.2

Changes in Clover-for-IDEA 4.0.0

Changes in Clover-for-IDEA 4.0.0

July 11, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look. See the Clover
.4.0 Release Notes

Implemented features and fixes

T Key Summary P

CLOV-1345 Apply ADG in the HTML report

1 issue

See also the .Clover-for-Ant Changelog

Known major bugs

T Key Summary P Fix Version/s Status

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%224.0.0%22+AND+fixVersion+not+in+%28%224.0.0%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+component+%3D+%22CIJ+Plugin%22+and+priority+%3E%3D+Major+order+by+priority+desc+++++++++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22CIJ+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.0%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+component+%3D+%22CIJ+Plugin%22+and+priority+%3E%3D+Major+order+by+priority+desc+++++++++&src=confmacro
https://confluence.atlassian.com/display/CLOVER032/Clover-for-IDEA+Changelog
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22CIJ+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++++++&src=confmacro

Documentation for Clover 4.0 347

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

No issues found

Changes in Clover-for-IDEA 3.3.0

Changes in Clover-for-IDEA 3.3.0

March 31, 2014

This is a feature release with a dedicated support for Spock framework and JUnit4 Parameterized Tests.

Please note that Clover-for-IDEA plug-in does not support Groovy in the IDE (see the pageSupported Platforms
), so you'll have to use Clover's Ant, Maven or Grails plug-in in order to instrument Spock tests.

Implemented features and fixes

T Key Summary P

CLOV-1462 ClassNotFoundException when running tests in IDEA 13.1 RC with Clover enabled

CLOV-1382 Add lambda toggle to report wizards in Eclipse and IDEA

CLOV-1441 Clover plugin doesn't load on IDEA 13 Startup

3 issues

See also the .Clover-for-Ant Changelog

Known major bugs

T Key Summary P Fix Version/s Status

No issues found

Clover-for-IDEA Glossary of Terms

Block Contexts

Refers to common Java coding constructs or idioms such as the body of if statements; static initialiser blocks; or
property style methods. These are pre-defined by Clover.

Cloverage (view)

The Cloverage view allows you to view and control Clover's instrumentation of your Java projects, and shows
you the coverage statistics for each project based on recent test runs or application runs.

Coverage Cloud (report)

A Clover report visualisation that prints class names to the screen, coloured to show their level of code coverage
and scaled in size to illustrate their complexity.

Coverage Report

Coverage reports are generated by Clover as PDF, HTML or XML, showing Clover's output in a readily
digestible format for the user.

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%224.0.0%22+AND+fixVersion+not+in+%28%224.0.0%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+component+%3D+%22CIJ+Plugin%22+and+priority+%3E%3D+Major+order+by+priority+desc+++++++++++&src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1462?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1382?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/browse/CLOV-1441?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22CIJ+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++++&src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=affectedVersion+%3D+%223.3.0%22+AND+fixVersion+not+in+%28%223.2.0%22%29+AND++project+%3D+CLOV+AND+issuetype+%3D+Bug+AND+component+%3D+%22CIJ+Plugin%22+and+priority+%3E%3D+Major+order+by+priority+desc+++++++++&src=confmacro

Documentation for Clover 4.0 348

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Coverage Treemap (report)

A Clover report visualisation that shows packages and classes as coloured squares. The square's respective
colour indicates the level of code coverage and they are scaled in size to illustrate their complexity (largest is
most complex).

Flush Policy (setting)

The Flush Policy controls when Clover writes coverage data to disk as your application runs.

Initstring (setting)

This controls where the Clover plugin stores (and looks for) the coverage database.

Instrumentation

In order to track the code coverage of your projects, Clover must insert special code into your programs at
compilation time. This special code is collectively called instrumentation.

Project (view)

The Project view is a navigation side bar in IDEA that allows you to view the project tree and drill down into
elements of the project structure visually, in order to select or edit them.

Summary Panel

The Summary Panel is part of Cloverage view with a set of metrics that are displayed alongside the tree for the
selected project, package, file, class or method in the tree.

Test Runs (view)

The Test Run Explorer view, like several popular plugins such as the JUnit Plugin or TestNG Plugin, lets you
explore your recently run tests - showing whether they passed or failed, their duration and any error messages
that they generated. Clover-for-IDEA takes this one step further and allows you to explore the code coverage
caused by an individual test, a test class, a package or even your entire project.

Clover-for-IDEA FAQ

Clover IDEA Plugin FAQ

I've run my tests, but coverage information does not show in IDEA
What does enabling Instrument Test Source Folders do?
Where does IDEA write its log file?

Clover-for-Grails

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 349

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover-for-Grails Documentation

What is Clover-for-Grails?

Clover-for-Grails integrates the
industry-leading code coverage tool, Atlassia

 with the web applicationn Clover Grails
development framework. Clover-for-Grails
allows you to easily measure the coverage of
your unit tests, enabling targeted work in unit
testing — resulting in stability and enhanced
quality code with maximal efficiency of effort.

Getting Started with Clover-for-Grails

Download Clover-for-Grails

Installation Guide

Change log for Clover-for-Grails

Using Clover for Grails

Installation and Upgrade Guide

Quick Start Guide

User's Guide

Resources and Support

Atlassian Answers

Support

Offline Documentation

You can download the Clover documentation
in PDF, HTML or XML format.

Recently Updated

Clover Road Map
Aug 12, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Upgrading third party libraries
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Updating optimization snapshot file
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Hacking Clover
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 4 - Test Optimization Tutorial
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 3 - Automating Coverage Checks
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 2 - Historical Reporting
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Part 1 - Measuring Coverage
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover 4.0 Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

A side-by-side comparison of the Classic and the ADG HTML report
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/clover/
http://www.atlassian.com/clover/
http://grails.org/
http://grails.org/plugin/clover
https://answers.atlassian.com/tags/clover/
http://support.atlassian.com
https://confluence.atlassian.com/display/ALLDOC
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313465693&selectedPageVersions=17&selectedPageVersions=16
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=310379086&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317949806&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313459430&selectedPageVersions=6&selectedPageVersions=5
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=171966945&selectedPageVersions=51&selectedPageVersions=50
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=73793592&selectedPageVersions=14&selectedPageVersions=13
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71600301&selectedPageVersions=48&selectedPageVersions=47
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=72548380&selectedPageVersions=44&selectedPageVersions=43
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=624198431&selectedPageVersions=7&selectedPageVersions=6
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=632980339&selectedPageVersions=4&selectedPageVersions=3

Documentation for Clover 4.0 350

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover Release Notes
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Sonar Clover Plugin
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover Command Line Tools
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-Grails Changelog
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Configuring method context filters
Aug 11, 2014 updated by • Marek Parfianowicz [Atlassian] • view change

Clover-for-Grails Quick Start Guide
On this page:

Generating Clover Reports
Install the Clover-for-Grails plugin
Generating a basic Clover coverage report
Passing the location of your clover.license file to the grails command line

Troubleshooting
Further reading

Generating Clover Reports

Install the Clover-for-Grails plugin

Install the Clover-for-Grails plugin by running the following Grails command in the root of your Grails project
directory.

grails install-plugin clover

Generating a basic Clover coverage report

To generate a basic Clover code coverage report, you need to add the Clover option to the -clover.on grail
 command line target for running unit tests against your Grails project.s test-app

grails test-app -clover.on -clover.view

Passing the location of your file to the command lineclover.license grails

If you have not placed your file within your Grails project or user home directory (as indicatedclover.license
in the), you can pass the license file's location to the command line by adding theInstallation Guide grails
Clover option :-clover.license.path=/path/to/clover.license

The 'grails install-plugin' command has been removed in Grails 2.3.5 upwards. In such case we
recommend adding the Clover plugin to your project's BuildConfig.groovy or pom.xml. For more
installation options, please see .Clover-for-Grails Installation Guide

Adding the Clover option to this Grails command makes the report open in a browser-clover.view
window immediately after generation. If you omit this command line option, Clover will generate a report
that you can then open manually.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=71599170&selectedPageVersions=49&selectedPageVersions=48
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=317950474&selectedPageVersions=3&selectedPageVersions=2
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=98665164&selectedPageVersions=12&selectedPageVersions=11
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=311918938&selectedPageVersions=15&selectedPageVersions=14
https://confluence.atlassian.com/display/~mparfianowicz
https://confluence.atlassian.com/pages/diffpagesbyversion.action?pageId=313467899&selectedPageVersions=5&selectedPageVersions=4
https://confluence.atlassian.com/display/CLOVER/Clover-for-Grails+Installation+Guide#Clover-for-GrailsInstallationGuide-licensefileinstallation

Documentation for Clover 4.0 351

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

grails test-app -clover.on -clover.license.path=/path/to/clover.license

Troubleshooting

If you find that Clover-for-Grails runs out of memory, try increasing the Grails PermGen allocation by either
setting the JAVA_OPTS environment variable:

export JAVA_OPTS="-XX:MaxPermSize=192m"

set JAVA_OPTS="-XX:MaxPermSize=192m"

Alternatively, you can define this variable in the (Linux/UNIX/Mac OS X) or (startGrails startGrails.bat
Windows) script in the directory.<Grails Home Directory>/bin

Further reading

Configuration options
Clover-for-Grails User's Guide

Clover-for-Grails User's Guide

Configuration options

Clover-for-Grails supports the configuration options outlined in the code sample below. All of these configuration
options are defined in a single {} code block, which itself is defined within the Groovy build configurationclover
file () of your Grails project.BuildConfig.groovy

On Windows platform you must put the entire in"-clover.license.path=c:\path\to\clover.license"
double quotes (it's a Grails "feature" which tries to evaluate a non-quoted value to boolean instead of
string).

Linux/UNIX/Mac OS X:

Windows:

The file is located in the subdirectory of your GrailsBuildConfig.groovy grails-app/conf
project's root directory.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 352

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clover {

 on = true|false // a boolean value indicating whether or not clover is enabled

 optimize = true|false // whether test optimization is enabled
 // (by setting optimize=true there's not need to set
on=true)

 license.path = "/path/to/clover.license" // the location of the clover license
file,
 // if not in one of the default locations

 debug = true|false // a boolean to toggle debugging on or off

 verbose = true|false // a boolean to toggle verbose output on or off; can be
overridden by debug=true; since 3.1.6

 initstring = "" // the location to use for Clover to write out its database

 instrumentLambda = "none|expression|block|all" // whether to instrument Java 8
lambda functions,
 // see the <clover-setup> Ant task for more details

 forceClean = true|false // whether to clean build directory (to force compilation
of classes with Clover),
 // true by default

 srcDirs = [] // an array of Strings of source directories to including in
instrumentation

 includes = [] // an array of String Ant Glob Patterns to include for
instrumentation

 excludes = [] // an array of String Ant Glob Patterns to exclude for
instrumentation

 setuptask = {} // Gant script to be called instead of the default clover-setup

 reporttask = {} // Gant script to be called when tests have finished

 historypointtask = {} // Gant script to be called when clover history point has to
be created

 reportStyle = "adg|classic" // style of the report - since Clover 4.0

 json = true|false // a boolean to enable generation of json output in report;
used if custom 'reporttask' script is not defined

 title = "" // a report title

 view = true|false // launch generated report in a web browser

}

More details for:

setuptask
reporttask

Advanced report configuration

Define a closure in your {} code block to configure advanced report generation options forreporttask clover

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 353

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

your Groovy project's build process. Here, you can define various attributes and elements of the tasclover-report
k. In fact, and their attributes and elements may be used in this closure.any Clover Ant tasks

 You would not normally include tasks in the closure because the latter is executedclover-setup reporttask
after the clover-setup tasks have executed.

The closure is passed the following parameters:reporttask

ant — an instance of a org.codehaus.gant.GantBuilder
binding — the groovy binding for accessing project variables
plugin — the clover grails plugin that invoked this closure

The syntax used to define your clover-report tasks or any other valid Ant task in the {} code block is clover Gan
.t

Example: custom reports in PDF, HTML, XML and JSON formats

The following example {} code block and definition in your fileclover reporttask BuildConfig.groovy
will:

generate a Clover report in both PDF and HTML formats and
place the results in the subdirectory of your Grails project directory.build/clover/report

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/6.+Ant+Task+Reference
http://gant.codehaus.org/
http://gant.codehaus.org/

Documentation for Clover 4.0 354

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clover {

 // reports.dir defines the location of your Clover report output
 // within your Grails project.

 reports.dir = "build/clover/report"

 // The reporttask closure is invoked after all tests have run.

 reporttask = { ant, binding, plugin ->

 ant.mkdir(dir: "${clover.reports.dir}")

 ant.'clover-report' {

 ant.current(outfile: "${clover.reports.dir}/clover.pdf", summary: true) {
 format(type: "pdf")
 }

 ant.current(outfile: "${clover.reports.dir}") {
 format(type: "html")
 ant.columns {
 lineCount()
 complexity()
 filteredElements(format:"bar")
 uncoveredElements(format: "raw")
 totalElements(format: "raw")
 totalPercentageCovered()
 }
 }

 ant.current(outfile: "${clover.reports.dir}/clover.xml") {
 format(type: "xml")
 }

 ant.current(outfile: "${clover.reports.dir}") {
 format(type: "json")
 }

 }

 plugin.launchReport(clover.reports.dir)

}

The closure could be also used to run other post-build activities, like clover-check or clover-log, forreporttask
example.

Example: failing build if code coverage is too low

reporttask = { ant, binding, self ->
 ant.'clover-check'(target: "80%", haltOnFailure: true) { }
}

Advanced setup configuration

Define a 'closure' in your {} code block to configure advanced options for your Groovysetuptask clover

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 355

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

project's build processes. Here, you can define various attributes and elements of the task.clover-setup

The closure is passed the following parameters:setuptask

ant — an instance of a org.codehaus.gant.GantBuilder
binding — the groovy binding for accessing project variables
plugin — the clover grails plugin that invoked this closure

The syntax used to define your clover-setup tasks in the {} code block is .clover Gant

Example: using custom clover.db location and set of files to be instrumented

clover {
 // Example setuptask closure that will be invoked to configure clover.
 // Any Clover initialisation tasks should be defined here.
 // All attributes on the ant clover-setup task, which are
 // supported by your source code, can be defined here.

 setuptask = { ant, binding, plugin ->
 ant.'clover-setup'(initstring:
"${binding.projectWorkDir}/clover/custom/clover.db") {
 ant.fileset(dir: "grails-app", includes: "**/*.groovy") { }
 }
 }
}

Example: enabling distributed coverage

clover {
 setuptask = { ant, binding, plugin ->
 ant.'clover-setup'(initstring:
"${binding.projectWorkDir}/clover/db/clover.db",
 tmpDir: "${binding.projectWorkDir}/clover/tmp") {
 distributedCoverage(port: 7777, host: "localhost", timeout: 5000,
numClients: 0)
 }
 }
}

Example: using shared coverage recorder

Use the Shared Coverage Recorder only in case when you have performance problem related with creation of
thousands of coverage recording files in clover.db directory. See for more details.Coverage Recorders

Please be aware that some attributes and sub-elements of the task do not support Groovy.clover-setup
Therefore, if your Grails project makes substantial use of Groovy code (as opposed to pure Java code,
which is likely to be the case), not all features of the task will be available to you. Refer toclover-setup
the topic for details.clover-setup

http://creativecommons.org/licenses/by/2.5/au/
http://gant.codehaus.org/

Documentation for Clover 4.0 356

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

clover {
 setuptask = { ant, binding, plugin ->
 ant.delete(dir: "target/clover/db")
 ant.delete(dir: "target/clover/tmp")
 ant.'clover-setup'(initstring: "target/clover/db/clover.db",
 tmpDir: "target/clover/tmp") {
 ant.profiles {
 ant.profile(name: "default", coverageRecorder: "SHARED")
 }
 }
 }
 reporttask = { ant, binding, plugin ->
 ant.delete(dir: "target/clover/report")
 ant.'clover-report'(initstring: "target/clover/db/clover.db") {
 ant.current(outfile: "target/clover/report/clover.xml") {
 ant.format(type: "xml")
 }
 ant.current(outfile: "target/clover/report") {
 ant.format(type: "html")
 }
 }
 }
 }

Configuring method context filters

You can filter-out less important code sections using context filters for: methods (groovy+java), statements (java)
and code blocks (java). See for more details.Using Coverage Contexts

A report can use custom set of columns - see tag documentation.<clover-report> / <columns>

Example:

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-report-Columns

Documentation for Clover 4.0 357

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

setuptask = { ant, binding, plugin ->
 ant.'clover-setup'(initstring: "target/clover/db/clover.db") {
 ant.fileset(dir: "grails-app") { }
 ant.fileset(dir: "src/groovy") { }
 ant.fileset(dir: "src/java") { }
 ant.fileset(dir: "test") { }

 // Ignore private constructors in Groovy - using normalized constructor
signature
 ant.methodContext(name: 'private-constructors', regexp: 'private void
<init>\\(\\)') { }

 // Ignore logging statements. Note that statement context is currently
supported only for Java.
 ant.statementContext(name: 'log', regexp: '^log\\..*')
 ant.statementContext(name: 'if-log', regexp: '^if.*\\(log\\..*')
 }
}

reporttask = { ant, binding, plugin ->
 ant.'clover-report'(initstring: "target/clover/db/clover.db") {
 ant.current(outfile: "target/clover/html-report", title: "API Report") {
 // NOTE: you have to add the 'filter' attribute with a list of filters from
clover-setup task
 ant.format(type: "html", filter: "private-constructors,log,if-log") { }
 ant.fileset(dir: "grails-app") { }
 ant.fileset(dir: "src/groovy") { }
 ant.fileset(dir: "src/java") { }
 ant.fileset(dir: "test") { }
 ant.columns {
 lineCount()
 filteredElements()
 uncoveredElements()
 totalPercentageCovered()
 }
 }
 }
}

Test Optimization with Clover-for-Grails

Follow the steps in this document to set up Clover's Test Optimization, which allows targeted testing of only the
code which has changed since the last build. This page contains the basic steps for adding Clover's Test
Optimization to a Grails application.

Command line quick start

The quickest possible way to start using Test Optimization in Clover-for-Grails is to run tests with the -clover.opt
 option, for instance:imize

grails test-app -clover.optimize

This feature is available since .Clover-for-Grails 3.1.10.1

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 358

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The does the following:-clover.optimize

enables Clover instrumentation
disables clean (note that performs full clean by default, unless the i-clover.on -clover.forceClean=false
s used)
analyses which application and test classes were modified since the last build and selects appropriate set
of tests

it's achieved by overwriting value of the testTargetPatterns variable from _GrailsTest.groovy script
stores optimization snapshot after test phase

By default, the snapshot file gets saved to (the ${projectWorkDir} is "${projectWorkDir}/clover.snapshot" "~/.g
 by default).rails/X.X.X/projects/project_name"

This file is needed to optimize subsequent builds. You can also specify an alternative location in clover.snapsh
, which can be defined in BuildConfig.groovy or passed from command line, for instance:otLocation

clover {
 snapshotLocation = "/path/to/clover.snapshot"
}

Test Optimization in action

For the first time you should run a full build in order to make sure that the whole code is instrumented by Clover.
You can run:

grails clean
grails test-app -clover.optimize

or

grails test-app -clover.on # clover.on forces full clean
grails test-app -clover.optimize

The first time Clover Test Optimization is used a full test run will be done. You should see the following log
message appear in the console:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 359

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If you then rerun the build, without modifying any source files (and ensuring the snapshot file is not deleted) you
should see the following:

If a source file (application or test class) is modified in any way (including whitespace changes), and you re-run
the build, only test cases that cover the modified file will be run:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 360

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

By default, the same snapshot file is updated for 10 consecutive builds. On the 10th build, the snapshot file is
deleted and recreated, which triggers a full test run.

You can also delete this file manually to force a full test run (note that if snapshot file is stored in default location,
the 'grails clean' command does not remove this file).

References

Overview of Test Optimization

Test Optimization Technical Details

Clover-for-Grails Installation Guide
This page provides instructions for all available Clover-for-Grails plug-in installation options.

Overview
Installation of Clover for Grails plug-in

Using the BuildConfig.groovy
Using the pom.xml
Using the 'install-plugin' command

Installing the Clover license file
Related Topics

Overview

The documentation below assumes that you have already and have configured your enviroinstalled Grails PATH

Clover License for Clover-for-Grails
We recommend purchasing Clover Server license for Grails-based projects.

A reason is that in order to see coverage results for a project built and tested from a command line, an
HTML report must be generated (and report generation is not available in the Clover Desktop edition).

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp
http://www.grails.org/Installation

Documentation for Clover 4.0 361

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

nment variable to point to the directory of your Grails installation.bin

Installing Clover-for-Grails

There are several ways to install Clover-for-Grails:

Declaring dependency in BuildConfig.groovy
Declaring dependency in pom.xml
Using the 'install-plugin' command

installing from the grails central repository
installing from the given web address
installing from the downloaded installation file

Installing the Clover license

Clover requires a license file in order to run. Once you have installed the Clover-for-Grails plugin, you will need
to download and install the Clover license file . You can generate a 30-day evaluation Cloverclover.license
license file by logging in to and following the instructions on the site. After 30 days, youhttps://my.atlassian.com
need to purchase a commercial Clover license file from this site to continue running Clover. Refer to the instructi

 for installing your Clover license file.ons below

Upgrading Clover-for-Grails

Upgrading the Clover-for-Grails plugin is also very easy, as .indicated here

Installation of Clover for Grails plug-in

Using the BuildConfig.groovy

Edit your grails-app/conf/BuildConfig.groovy file and add a section like below:

grails.project.dependency.resolution = {
 plugins {
 compile "org.grails.plugins:clover:4.0.0"
 }
 // For Grails 2.2 and later you have to add a dependency to a Clover core:
 dependencies {
 compile "com.atlassian.clover:clover:4.0.0" // com.cenqua.clover:clover
for 3.x.x
 }
 // or use a legacy dependency resolution mechanism:
 // legacyResolve true
}

Using the pom.xml

Grails 2.1 has introduced new dependency management based on Maven's pom.xml instead of
BuildConfig.groovy file. In order to use this, declare in BuildConfig.groovy:"pom true"

grails.project.dependency.resolution = {
 pom true
}

and add dependencies to (and) in pom.xml:org.grails.plugins:clover com.atlassian.clover:clover

grails-app/conf/BuildConfig.groovy

grails-app/conf/BuildConfig.groovy

http://creativecommons.org/licenses/by/2.5/au/
https://my.atlassian.com

Documentation for Clover 4.0 362

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<dependency>
 <groupId>org.grails.plugins</groupId>
 <artifactId>clover</artifactId>
 <version>4.0.0</version>
 <scope>compile</scope>
 <type>zip</type>
</dependency>
<!-- For *Grails 2.2* or later you must also add a dependency to the Clover Core
-->
<dependency>
 <groupId>com.atlassian.clover</groupId> <!-- com.cenqua.clover for Clover 3.x
-->
 <artifactId>clover</artifactId>
 <version>4.0.0</version>
 <scope>compile</scope>
 <type>jar</type>
</dependency>

Using the 'install-plugin' command

grails install-plugin clover 4.0.0

 The 'install-plugin' command has been deprecated in Grails 2.1. It's recommended to use BuildConfig.groovy
or pom.xml.

 If you're using Grails 1.3.7 and earlier, you might need to add a following entry to your list of repositories.

grailsRepo "http://plugins.grails.org"

 If you experience problems using this method, try installing the plugin directly from its :web address

grails install-plugin
http://plugins.grails.org/grails-clover/tags/RELEASE_x_y_z/grails-clover-x.y.z.zip

Where , and (optional) refer to the latest version of the Clover-for-Grails plugin to be installed.x y z

It's also possible to install it from a downloaded file:

grails install-plugin /path/to/grails-clover-x.y.zip

pom.xml

Due to the nature of Grails' plugin installation architecture, you will need to install the Clover-for-Grails
plugin into each Grails project whose source code you wish to test with Clover.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 363

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Installing the Clover license file

Once you have obtained your 30 day evaluation or commercial file, you need to install it soclover.license
that your Clover-for-Grails plugin can acknowledge its existence.

You have the following options for installing the Clover license file :clover.license

Move or copy the file intoclover.license
this location:

Notes about this option:

The root directory of your Grails project.

For e.g. <Grails Installation
Directory>/samples/petclinic

This option installs the Clover license file to this Grails
project only. You will need to install this file into each of your
other Grails projects with the Grails-for-Clover plugin too.

The directory within your Grails project.etc

For e.g. <Grails Installation
Directory>/samples/petclinic/etc

This is similar to the previous option but 'hides' the clover.
 file from the root directory of your Grails project.license

Your user home directory.

Linux/UNIX/Mac OS X:
e.g. or /home/alice/ ~

Windows:
e.g. C:\Users\Alice

This will prevent you having to install the Clover license file
into every Grails project on your computer as the license file
will apply to every Grails project developed on your
computer and login account.

Related Topics

Clover-for-Grails Quick Start Guide
does-clover-grails-plugin-work-with-grails-2-2-1

Clover-for-Grails Upgrade Guide

Upgrading the Clover-for-Grails plugin

Upgrading the Clover-for-Grails plugin is easy. All you need to do is to 're-install' the Clover-for-Grails plugin by
following one of the . During the installation process, Grails will prompt you with a messagethree methods above
similar to the following:

You currently already have a version of the plugin installed
[clover-x.y].
Do you want to upgrade this version? (y, n)

Type 'y', then press enter, then Grails will remove the old version of the Clover-for-Grails plugin and replace it
with the newer version.

You can also place the anywhere else that's accessible to the Clover-for-Grailsclover.license
plugin and reference it from either:

The Grails command line
The file.BuildConfig.groovy

http://creativecommons.org/licenses/by/2.5/au/
https://answers.atlassian.com/questions/155179/does-clover-grails-plugin-work-with-grails-2-2-1
https://confluence.atlassian.com/display/CLOVER/Clover-for-Grails+Quick+Start+Guide#Clover-for-GrailsQuickStartGuide-commandlinepassinglicense
https://confluence.atlassian.com/display/CLOVER/Clover-for-Grails+Quick+Start+Guide#Clover-for-GrailsQuickStartGuide-configuringcloverforgrails

Documentation for Clover 4.0 364

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

3.
4.

Upgrading Grails framework

Clover-for-Grails only supports the version of Grails indicated on the page. Hence, if yourSupported Platforms
Grails project has been developed using an older version of Grails, you will need to:

Download and install a newer version of Grails that Clover supports.
Update your environment variable to point to the directory of the newly installed version ofPATH bin
Grails.
Change directory to the root of your Grails project directory.
Run the command:

grails upgrade

This upgrades your Grails project to the new version of Grails that you just installed.

About Clover-for-Grails

Overview

The Clover-for-Grails plugin allows you to produce Clover code coverage reports from the Grails web application
development framework. It provides detailed information to highlight areas of low coverage in your project,
helping to guide your unit-testing activities.

Open Source status

This plugin is open source, under the Apache 2.0 license. Source code is available here: https://bitbucket.org/atl
assian/grails-clover-plugin

License

The plugin includes a built in 30-day evaluation license. You can buy full license here: https://my.atlassian.com/p
urchase

Support

Atlassian Answers (the 'clover' tag) is the best place to search first
if you still got stuck, feel free to raise a support ticket at (under the "Clover Support"Atlassian Support
project)
if you've found a bug or would like to raise a feature request, create new issue in Clover's issue tracker

Downloads

The easiest way is to define dependency to "clover" in your application's BuildConfig.groovy file. See installation
 for more details.guide

The latest binaries can be also downloaded from page.http://grails.org/plugin/clover

Clover-for-Grails Changelog
Please also refer to the .Clover-for-Ant Changelog

The changes for the latest versions are as follows:

Changes in Clover-for-Grails 4.0.0

July 14, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look.

Implemented features and fixes

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/grails-clover-plugin
https://bitbucket.org/atlassian/grails-clover-plugin
https://my.atlassian.com/purchase
https://my.atlassian.com/purchase
https://answers.atlassian.com/tags/clover/
http://support.atlassian.com/
https://jira.atlassian.com/browse/CLOV
http://grails.org/plugin/clover

Documentation for Clover 4.0 365

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Key Summary T P

CLOV-1345 Apply ADG in the HTML report

1 issue

See also change log for Clover-for-Ant, Clover-for-Maven, Clover-for-Eclipse, Clover-for-IDEA.

Changes in Clover-for-Grails 3.3.0

April 1, 2014

This is a feature release with dedicated support for the Spock framework and JUnit4 parameterized tests.

Implemented features and fixes

Key Summary T P

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

CLOV-1458 Grails Clover Plugin Causing ConcurrentModification Error

2 issues

See also change log for Clover-for-Ant, Clover-for-Maven, Clover-for-Eclipse, Clover-for-IDEA.

Older versions

Looking for older versions? See .Clover-for-Grails Changelog for Clover 3.2

Changes in Clover-for-Grails 4.0.0

Changes in Clover-for-Grails 4.0.0

July 14, 2014

This is a feature release with new HTML report with the ADG (Atlassian Design Guidelines) look.

Implemented features and fixes

Key Summary T P

CLOV-1345 Apply ADG in the HTML report

1 issue

See also change log for Clover-for-Ant, Clover-for-Maven, Clover-for-Eclipse, Clover-for-IDEA.

Changes in Clover-for-Grails 3.3.0

Changes in Clover-for-Grails 3.3.0

April 1, 2014

This is a feature release with dedicated support for the Spock framework and JUnit4 parameterized tests.

Implemented features and fixes

Key Summary T P

CLOV-1256 as a developer I'd like to instrument tests written in the Spock framework

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22Grails+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+&src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22Grails+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++&src=confmacro
https://confluence.atlassian.com/display/CLOVER032/Clover-for-Ant+Changelog
https://confluence.atlassian.com/display/CLOVER032/Clover-for-Grails+Changelog
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/browse/CLOV-1345?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%224.0.0%22+AND+component+%3D+%22Grails+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc+&src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro
https://jira.atlassian.com/browse/CLOV-1256?src=confmacro

Documentation for Clover 4.0 366

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.
5.

CLOV-1458 Grails Clover Plugin Causing ConcurrentModification Error

2 issues

See also change log for Clover-for-Ant, Clover-for-Maven, Clover-for-Eclipse, Clover-for-IDEA.

Clover Command Line Tools
Clover provides a set of Command line tools for integration with legacy build systems such as Make, or custom
build scripts. If you use Jakarta Ant to build your project, a set of Clover Ant Tasks provides easier Ant
integration.

To use the tools in your build system, the synopsis is:

Copy and instrument your source files using .CloverInstr
Compile the instrumented source files using a standard java compiler.
Execute your tests using whatever framework.
(Optional) If you have multiple separate coverage databases, merge them using .CloverMerge
Use either the , , , or to view theXMLReporter HtmlReporter PDFReporter JSONReporter ConsoleReporter
measured coverage results.

Command line tools:

CloverInstr Copies and instruments individual Java source files, or a directory of source files.

Please note that this tool does not instrument Groovy.

CloverMerge Merges existing Clover databases to allow for combined reports to be generated.

XMLReporter Produces coverage reports in XML.

HtmlReporter Produces coverage reports in HTML.

JSONReporter Produces coverage reports in JSON format.

PDFReporter Produces coverage reports in PDF format.

ConsoleReporter Reports coverage results to the console.

Troubleshooting

Troubleshooting License Problems

When running Clover Command Line Tools you may come across the following error:

ERROR: No license file found.
Exception in thread "main" java.lang.RuntimeException: Invalid or
missing License.. Please visit http://my.atlassian.com to obtain a valid
license.
at com.atlassian.clover.CloverStartup.loadLicense(CloverStartup.java:58)
at com.atlassian.clover.CloverStartup.loadLicense(CloverStartup.java:25)

Please ensure that your file is in the same directory as the file, or use the clover.license clover.jar clo
 parameter when running Clover Command Line Tools. For example:ver.license.path

java -Dclover.license.path=/path/to/clover.license -cp
/path/to/clover.jar com.atlassian.clover.CloverInstr ...

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/browse/CLOV-1458?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=fixVersion+%3D+%223.3.0%22+AND+component+%3D+%22Grails+Plugin%22+AND+project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+Improvement%2C+Bug%29+AND+resolution+%3D+Fixed+ORDER+BY+priority+desc++&src=confmacro

Documentation for Clover 4.0 367

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

CloverInstr
This tool copies and instruments a set of Java source files specified on the command line. The output of the
instrumentation process is ; you will then need to compile the instrumented sourceinstrumented java source
using a standard Java compiler.

Usage

java com.atlassian.clover.CloverInstr [OPTIONS] PARAMS [FILES...]

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.CloverInstr.

Params

-i, --initstring
<file>

Clover initstring. This is the full path to the dbfile that will be used to construct/update to store
coverage data.

-s, --srcdir
<dir>

Directory containing source files to be instrumented. If omitted individual source files should be
specified on the command line.

-d, --destdir
<dir>

Directory where Clover should place the instrumented sources. Note that files will be
overwritten in the destination directory.

Options

-dc, --distributedCoverage
<string>

Configuration for recording distributed pre-test coverage.
Valid keys and default values are: ON | OFF |

--dontFullyQualifyJavaLang If set, then java.lang will not be used in instrumented source.

-e, --encoding <encoding> Specify the file encoding for source files. If not specified, the platform default
encoding is used.

-f, --flushinterval <int> Tell Clover how often to flush coverage data when using either "interval" or
"threaded" flushpolicy. Value in milliseconds.

--instrumentation <policy> Set the instrumentation strategy. Valid values are "field" and "class". Default is
"class".

--instrlevel <string> Set the instrumentation level. Valid values are "statement" and "method".
Default is "statement".

--instrlambda <string> Whether to instrument lambda functions. Valid values are:

"none" - lambda functions will not be visible as "methods", code statements
from a lambda body will become a part of an enclosing method
"expression" - only lambda functions in an expression-like form (e.g. "(a, b)

) are instrumented-> a + b"
"block" - only lambda functions written as code blocks (e.g. "() -> { return

) are instrumented 123; }"
"all" - instrument all lambda functions

Since Clover 3.2.2.

-p, --flushpolicy <policy> Tell Clover which flushpolicy to use when flushing coverage data to disk. Valid
values are "directed", "interval" and "threaded". With "interval" or "threaded",
you must also specify a flushinterval using -f. The default value is "directed".

-mc --methodContext
<name>=<regexp>

Defines a single custom method context. May be supplied more than once. (The
\ may be needed to prevent shell expansion)

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 368

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

-sc --statementContext
<name>=<regexp>

Defines a single custom statement context. May be supplied more than once.
(The \ may be needed to prevent shell expansion)

-r, --relative If specified, the initstring is treated as a relative path, rather than being
converted to an absolute path. This is useful for distributed testing
environments.

--recordTestResults
<true|false>

If set to " ", test results will not be recorded; instead, results can be addedfalse
via the fileset at report time. For more details please see '<testResults> Adv

'.anced Usage

--source <level> Set the language level for Clover to use when parsing files.

--sourceRoot <string> Source root path prefix that will be ignored when evaluating the test inclusion
patterns. This parameter is optional; it specifies what is trimmed from the
beginning of the file path before the tests Include/Exclude Pattern is evaluated
(see parameters below). For example, if you specify --sourceRoot

, then pattern would match a file in/home/user/project/src 'test/*.'
this location: ' './home/user/project/src/test/Test.java
If you leave the option out, the pattern would need to start with --sourceRoot

'* or specify the full path '/home/user/project/src/test/.

-v, --verbose Enable verbose logging.

API Usage

CloverInstr provides a simple API that accepts an array of strings representing the command line arguments and
returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.CloverInstr;

...

String [] cliArgs =
 { "-jdk14", "-i", "clover.db", "-d", "build/instr", "Money.java" }
 ;
 int result = CloverInstr.mainImpl(cliArgs);
 if (result != 0) {
 // problem during instrumentation
 }

Examples

java com.atlassian.clover.CloverInstr -i clover.db -s src -d build/instr

Find all java source files in the directory "src", copy and instrument them into the directory "build/instr", which will
be constructed if it does not exist. Coverage database "clover.db" is initialised.

java com.atlassian.clover.CloverInstr --source 1.4 -i clover.db -d
../../build/instr \
 Money.java IMoney.java

Copy and instrument the source files "Money.java" and "IMoney.java" into the directory "../../build/instr
. Use the JDK1.4 grammar (i.e. support the 'assert' keyword)."

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 369

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

CloverMerge
This tool merges existing Clover databases to allow for combined reports to be generated.

Usage

java com.atlassian.clover.CloverMerge [OPTIONS] PARAMS [DBFILES...]

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.CloverMerge.

Parameters

Parameter Description Required

-i, --initstring
<file>

Clover initstring. Clover initstring. This is the path where the new merged
database will be written.

Yes.

Options

Option Description

-d,
--debug

Enable debug logging.

-s, --span
interval

Specifies the span to use when reading subsequent databases to be merged. This option can be
specified more than once and applies to all databases specified after the option, or until another
span in specified

-u,
--update
interval

If specified, any existing database specified by -i will be included in the merge. If interval is
specified, it is used as the span when reading the existing database.

-v,
--verbose

Enable verbose logging.

API Usage

CloverMerge provides a simple API that accepts an array of strings representing the command line arguments
and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.CloverMerge;

...

String [] cliArgs = { "-i", "new.db", "proj1.db", "proj2.db", "-s", "10s",
"proj3.db" };
int result = CloverMerge.mainImpl(cliArgs);
if (result != 0) {
 // problem during instrumentation
}

Examples

java com.atlassian.clover.CloverMerge -i new.db proj1.db proj2.db

Merges proj1.db and proj2.db into the new database new.db. A span of zero seconds is used.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 370

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

java com.atlassian.clover.CloverMerge -i new.db proj1.db -s 30s proj2.db proj3.db

Merges proj1.db, proj2.db and proj3.db into the new database new.db. A span of zero seconds is used for
proj1.db, and a span of 30 seconds is used for proj2.db and proj3.db.

ConsoleReporter
Reports Code Coverage for the given coverage database to the console.

Usage

java com.atlassian.clover.reporters.console.ConsoleReporter [OPTIONS] PARAMS

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.reporters.console.ConsoleReporter.

Params

-i, --initstring <file> The initstring of the coverage database.

Options

-t, --title
<string>

Report title

-l, --level
<string>

The level of detail to report. Valid values are "summary", "class", "method", "statement".
Default value is "summary".

-p,
--sourcepath
<path>

The source path to search when looking for source files.

-si,
--showinner

Since 3.2.0: Show inner functions in the report (like a lambda function inside a method).

-sl,
--showlambda

Since 3.2.0: Show lambda functions in the report.

-s, --span
<interval>

Specifies how far back in time to include coverage recordings from since the last Clover build.
See . Default includes "all coverage data found".Using Spans

-u, --unittests Since 3.1.6: Show unit tests results summary. By default summary is not listed.

-c, --codetype Since 3.1.6: The type of code to report on. Valid values are: APPLICATION, TEST, ALL.
Default value: APPLICATION

Return code

The ConsoleReporter.main() calls System.exit() and returns a non-zero value in case of error during report
generation.

API Usage

The files named coverage.dbxxxx_xxx_xxx are not db files. Please see the clover . knowledge base
You only need to merge files called coverage.db (there should be one per a directory) and not the
recording files coverage.dbxxxx_xxx_xxx (there could be hundreds of these)

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/pages/viewpage.action?pageId=163414399

Documentation for Clover 4.0 371

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

ConsoleReporter provides a simple API that accepts an array of strings representing the command line
arguments and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.reporters.console.ConsoleReporter;

 ...

 String [] cliArgs = { "-l", "method", "-t", "Method Coverage", "-i",
"clover.db" };
 int result = ConsoleReporter.mainImpl(cliArgs);
 if (result != 0) {
 // problem during report generation
 }

Examples

java com.atlassian.clover.reporters.console.ConsoleReporter -i clover.db

Reads coverage for the Clover database "clover.db", and produces a summary report to the console.

java com.atlassian.clover.reporters.console.ConsoleReporter -l "method" -t "Method
Coverage" -i clover.db

Produces the same report as above, but includes method-level coverage information, and a report title.

HtmlReporter
Produces an HTML report of Code Coverage for the given coverage database.

Usage

java com.atlassian.clover.reporters.html.HtmlReporter [OPTIONS] PARAMS

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.reporters.html.HtmlReporter.

Params

-i, --initstring <file> The initstring of the coverage database.

-o, --outputdir <dir> The directory to write the report to. Will be created if it doesn't exist.

Options

-a, --alwaysreport Forces a report to be generated, even if there is no coverage data. Defaults to ' ',false
i.e. a report with no coverage will abort generation.

-b, --hidebars Don't render coverage bars.

-bw Don't colour syntax-highlighted source — smaller HTML output.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 372

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

-c, --orderby
<compname>

Comparator to use when listing packages and classes. Default is PcCoveredAsc.
Valid values are:

Alpha — Alpabetical.
PcCoveredAsc — Percent total coverage, ascending.
PcCoveredDesc — Percent total coverage, descending.
ElementsCoveredAsc — Total elements covered, ascending.
ElementsCoveredDesc — Total elements covered, descending.
ElementsUncoveredAsc — Total elements uncovered, ascending.
ElementsUncoveredDesc — Total elements uncovered, descending.

-d, --debug Switch logging level to debug.

-e, --showempty Show classes/packages even if they don't have any statements, methods or
conditionals. default is false

-f, --filter <string> Comma or space separated list of contexts to ignore when generating coverage
reports. Most useful one is "catch".
Valid values are "assert", "static", "instance", "constructor", "method", "switch", "while",
"do", "for", "if", "else", "try", "catch", "finally", "sync", or the name of a user-defined
Context. See .Using Contexts

-h, --hidesrc Don't render source level coverage.

-if
--includefailcoverage

Specifies whether or not to include coverage attributed to a test that has failed. If
omitted, failed test coverage is not included. Default setting is 'false'.

-n, --nocache Insert no-cache browser directives in html output.

-p, --sourcepath
<path>

The source path to search when looking for source files.

-s, --span <interval> Specifies how far back in time to include coverage recordings from. See Using Spans.
Default includes "all coverage data found".

-si, --showinner Since 3.2.0: Show inner functions in the report (like a lambda function inside a
method).

-sl, --showlambda Since 3.2.0: Show lambda functions in the report.

-su, --showunique Since 3.1.5: Calculate and show unique per-test coverage (for large projects can
consume much memory and take a significant amount of time). Defaults to false.

--style <string> Since 4.0.0: Style of the report:

"adg" - following the (default)Atlassian Design Guidelines

"classic" - JavaDoc-like (deprecated, will be removed in future)

-t, --title <string> Report title.

-tc, --threadcount
<int>

Number of threads to be allocated to report generation. Default is 0.additional

-tw, --tabwidth <int> The number of spaces to subsitute TAB characters with. Defaults to 4.

-v, --verbose Switch logging level to verbose.

Return code

The HtmlReporter.main() calls System.exit() and returns a non-zero value in case of error during HTML report
generation.

http://creativecommons.org/licenses/by/2.5/au/
http://developer.atlassian.com/design/latest/

Documentation for Clover 4.0 373

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

API Usage

HtmlReporter provides a simple API that accepts an array of strings representing the command line arguments
and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.reporters.html.HtmlReporter;
import com.atlassian.clover.CloverStartup;
import com.atlassian.clover.Logger;

public class HtmlReportRunner {
 public void runReport() {
 CloverStartup.loadLicense(Logger.getInstance());
 String [] cliArgs = { "-i", "clover.db", "-o", "clover_html" };
 int result = HtmlReporter.runReport(cliArgs);
 if (result != 0) {
 // problem during report generation
 }
 }
}

Examples

java com.atlassian.clover.reporters.html.HtmlReporter -i clover.db -o clover_html

Reads coverage for the Clover database "clover.db", and produces a report in the directory "clover_html".

java com.atlassian.clover.reporters.html.HtmlReporter -c ElementsCoveredAsc
 -t "My Coverage" -i clover.db -o clover_html

Produces the same report as above, but includes a report title, and orders lists by total elements covered rather
than percentage covered.

JSONReporter
Produces a JSON report of Code Coverage for the given coverage database.

Usage

java com.atlassian.clover.reporters.json.JSONReporter [OPTIONS] PARAMS

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.reporters.json.JSONReporter.

Parameters

-i, --initstring <file> The initstring of the coverage database.

-o, --outputdir <dir> The output directory for generated JSON.

Options

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 374

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

-a, --alwaysreport Forces a report to be generated, even if there is no coverage data. Defaults to ' ',false
i.e. a report with no coverage will abort generation.

-d, --debug Switch logging level to debug.

-if
--includefailcoverage

Specifies whether or not to include coverage attributed to a test that has failed. If
omitted, failed test coverage is not included. Default setting is 'false'.

-si, --showinner Since 3.2.0: Show inner functions in the report (like a lambda function inside a
method).

-sl, --showlambda Since 3.2.0: Show lambda functions in the report.

-tc, --threadcount
<int>

Number of threads to be allocated to report generation. Default is 0.additional

-v, --verbose Switch logging level to verbose.

Return code

The JSONReporter.main() calls System.exit() and returns non-zero return code in case of error during JSON
report generation.

API Usage

JSONReporter provides a simple API that accepts an array of strings representing the command line arguments
and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.CloverStartup;
import com.atlassian.clover.Logger;
import com.atlassian.clover.reporters.json.JSONReporter;

public class JsonReportRunner {
 public void runReport() {
 CloverStartup.loadLicense(Logger.getInstance());
 String [] cliArgs = { "-i", "clover.db", "-o", "clover_json" };
 int result = JSONReporter.runReport(cliArgs);
 if (result != 0) {
 // problem during report generation
 }
 }
}

Examples

java com.atlassian.clover.reporters.json.JSONReporter -i clover.db -o clover_json

Read coverage for the Clover database "clover.db" and produce a report in the directory "clover_json".

PDFReporter
Produces a PDF summary report of Code Coverage for the given coverage database.

Usage

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 375

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

java com.atlassian.clover.reporters.pdf.PDFReporter [OPTIONS] PARAMS

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.reporters.pdf.PDFReporter.

Params

-i, --initstring <file> The initstring of the coverage database.

-o, --outfile <file> The file to write the report to.

Note: In Clover 3.1.x and older the longer option was named '--outputfile'

Options

-a, --alwaysreport Forces a report to be generated, even if there is no coverage data. Defaults to ' ',false
i.e. a report with no coverage will abort generation.

-b, --hidebars Don't render coverage bars.

-c, --orderby
<compname>

Comparator to use when listing packages and classes. Default is PcCoveredAsc.
Valid values are:

Alpha — Alpabetical.
PcCoveredAsc — Percent total coverage, ascending.
PcCoveredDesc — Percent total coverage, descending.
ElementsCoveredAsc — Total elements covered, ascending.
ElementsCoveredDesc — Total elements covered, descending.
ElementsUncoveredAsc — Total elements uncovered, ascending.
ElementsUncoveredDesc — Total elements uncovered, descending.

-d, --debug Switch logging level to debug

-e, --showempty Show classes/packages even if they don't have any statements, methods or
conditionals. default is false.

-f, --filter <string> Comma or space separated list of contexts to ignore when generating coverage
reports. Most useful one is "catch".
Valid values are "assert", "static", "instance", "constructor", "method", "switch", "while",
"do", "for", "if", "else", "try", "catch", "finally", "sync", or the name of a user-defined
Context. See .Using Contexts

-if
--includefailcoverage

Specifies whether or not to include coverage attributed to a test that has failed. If
omitted, failed test coverage is not included. Default setting is 'false'.

-p, --pagesize
<size>

Specify the page size to render. Valid values are "Letter" and "A4". Default is "A4".

-s, --span <interval> Specifies how far back in time to include coverage recordings from. See .Using Spans
Default includes all coverage data found.

-t, --title <string> Report title

-tc, --threadcount
<int>

Number of threads to be allocated to report generation. Default is 0.additional

-v, --verbose Switch logging level to verbose

Return code

The PDFReporter.main() calls System.exit() and returns non-zero return code in case of error during PDF report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 376

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

generation.

API Usage

PDFReporter provides a simple API that accepts an array of strings representing the command line arguments
and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.CloverStartup;
import com.atlassian.clover.Logger;
import com.atlassian.clover.reporters.pdf.PDFReporter;

public class PdfReportRunner {
 public void runReport() {
 CloverStartup.loadLicense(Logger.getInstance());
 String [] cliArgs = { "-i", "clover.db", "-o", "clover.pdf" };
 int result = PDFReporter.runReport(cliArgs);
 if (result != 0) {
 // problem during report generation
 }
 }
}

Examples

java com.atlassian.clover.reporters.pdf.PDFReporter -i clover.db -o coverage.pdf

Reads coverage for the Clover database "clover.db", and produces a pdf report in the file "coverage.pdf".

java com.atlassian.clover.reporters.pdf.PDFReporter -c ElementsCoveredAsc
 -t "My Coverage" -i clover.db -o coverage.pdf

Produces the same report as above, but includes a report title, and orders lists by total elements covered rather
than percentage covered.

XMLReporter
Produces an XML report of Code Coverage for the given coverage database.

Usage

java com.atlassian.clover.reporters.xml.XMLReporter [OPTIONS] PARAMS

Note: in Clover 3.1.x and older a class was named com.cenqua.clover.reporters.xml.XMLReporter.

Parameters

-i, --initstring <file> The initstring of the coverage database.

-o, --outfile <file> The file to write XML output to.

Options

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 377

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

-a, --alwaysreport Forces a report to be generated, even if there is no coverage data. Defaults to ' ',false
i.e. a report with no coverage will abort generation.

-d, --debug Switch logging level to debug.

-f, --filter <string> Comma or space separated list of contexts to ignore when generating coverage
reports. Most useful one is "catch".
Valid values are "assert", "static", "instance", "constructor", "method", "switch", "while",
"do", "for", "if", "else", "try", "catch", "finally", "sync", or the name of a user-defined
Context. See .Using Contexts

-if
--includefailcoverage

Specifies whether or not to include coverage attributed to a test that has failed. If
omitted, failed test coverage is not included. Default setting is 'false'.

-l, --lineinfo Include source-level coverage info.

-s, --span <interval> Specifies how far back in time to include coverage recordings from. . See Using Spans
. Default includes "all coverage data found".

-si, --showinner Since 3.2.0: Show inner functions in the report (like a lambda function inside a
method).

-sl, --showlambda Since 3.2.0: Show lambda functions in the report.

-tc, --threadcount
<int>

Number of threads to be allocated to report generation. Default is 0.additional

-t, --title <string> Report title.

-v, --verbose Switch logging level to verbose.

Return code

@since Clover 3.1.12: The XMLReporter.main() calls System.exit() and returns non-zero return code in case of
error during XML report generation.

API Usage

XMLReporter provides a simple API that accepts an array of strings representing the command line arguments
and returns an integer result code. The following fragment illustrates use of the API:

import com.atlassian.clover.CloverStartup;
import com.atlassian.clover.Logger;
import com.atlassian.clover.reporters.xml.XMLReporter;

public class XmlReportRunner {
 public void runReport() {
 CloverStartup.loadLicense(Logger.getInstance());
 String [] cliArgs = { "-i", "clover.db", "-o", "clover.xml" };
 int result = XMLReporter.runReport(cliArgs);
 if (result != 0) {
 // problem during report generation
 }
 }
}

Examples

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 378

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

java com.atlassian.clover.reporters.xml.XMLReporter -i clover.db -o coverage.xml

Read coverage for the Clover database "clover.db", and produce a report in the file "coverage.xml"

java com.atlassian.clover.reporters.xml.XMLReporter -l -t "My Coverage" -i
clover.db -o coverage.xml

Produce the same report as above, but include source-level coverage information, and a report title.

Bamboo Clover Plugin

 Bamboo Clover Plugin
Bamboo Clover Plugin provides a "single-click" integration with your Ant-based or Maven-based builds in
Bamboo.

See :Bamboo Documentation Home

Enabling the Clover add-on
Using Bamboo with Clover

Getting gcov results in Clover coverage summary
Viewing the Clover code-coverage for a build
Viewing the Clover code-coverage for a plan

More Bamboo tool integrations:

Integrating Bamboo with Atlassian applications

Gradle Clover Plugin

Gradle framework can automate the building, testing, publishing, deployment and more of software packages or
other types of projects such as generated static websites or generated documentation.

Gradle Cookbook

Gradle cookbook presents a simple script with basic Clover integration:

http://wiki.gradle.org/display/GRADLE/Cookbook#Cookbook-usingClover

Gradle Clover Plugin

A quite functional Clover plugin written by Benjamin Muschko:

https://github.com/bmuschko/gradle-clover-plugin

Known issues:

https://github.com/bmuschko/gradle-clover-plugin/issues
plug-in requires presence of "main" source directory (e.g. src/main/groovy)

This is an open-source extension and Atlassian does not provide technical support for it.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/BAMBOO/Bamboo+Documentation+Home
https://confluence.atlassian.com/display/BAMBOO/Enabling+the+Clover+add-on
https://confluence.atlassian.com/display/BAMBOO/Using+Bamboo+with+Clover
https://confluence.atlassian.com/display/BAMBOO/Getting+gcov+results+in+Clover+coverage+summary
https://confluence.atlassian.com/display/BAMBOO/Viewing+the+Clover+code-coverage+for+a+build
https://confluence.atlassian.com/display/BAMBOO/Viewing+the+Clover+code-coverage+for+a+plan
https://confluence.atlassian.com/display/BAMBOO/Integrating+Bamboo+with+Atlassian+applications
http://www.gradle.org/
http://wiki.gradle.org/display/GRADLE/Cookbook#Cookbook-usingClover
https://github.com/bmuschko/gradle-clover-plugin
https://github.com/bmuschko/gradle-clover-plugin/issues

Documentation for Clover 4.0 379

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

a default test inclusion pattern is "**/*Test.java" and "**/*Test.groovy", so in case you have other test
naming convention (for instance, Spock framework has "*Spec.groovy") you have to declare clover.testInc

 property in build.gradleludes

Griffon Clover Plugin

Griffon Clover Plugin home page

Hudson Clover Plugin

Integration with Hudson continuous integration system. This plug-in allows you to capture code coverage reports
from . Hudson will generate and track code coverage across time.Clover

Home page: http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin

Jenkins Clover Plugin

Integration with Jenkins continuous integration system. This plug-in allows you to capture code coverage reports
from . Jenkins will generate and track code coverage across time.Clover

Home page: https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin

Sonar Clover Plugin

Integration with - an open source quality management platform, dedicated to continuously analyse andSonar
measure technical quality, from project portfolio to a method.

Home page: http://docs.codehaus.org/display/SONAR/Clover+Plugin

Clover Release Notes
Release Summary

Clover 4.0

11 July 2014
HTML ADG report

This is an open-source extension and Atlassian does not provide technical support for it.

This is an open-source extension and Atlassian does not provide technical support for it.

This is an open-source extension and Atlassian does not provide technical support for it.

This is an open-source extension and Atlassian does not provide technical support for it.

http://creativecommons.org/licenses/by/2.5/au/
http://artifacts.griffon-framework.org/plugin/clover/installation
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
http://sonar.codehaus.org/
http://docs.codehaus.org/display/SONAR/Clover+Plugin

Documentation for Clover 4.0 380

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Read the .Clover 4.0 release notes

Clover 3.3

31 March 2014
Spock framework support
JUnit4 parameterized tests
Lambda toggle in report wizards (Eclipse, IDEA)

Read the .Clover 3.3 release notes

Clover 3.2

21 October 2013
Java 1.8 Support
Support for Eclipse 4.3 and RAD 8.5
Dropped support for JDK1.4
Enhanced reports

Read the .Clover 3.2 release notes

Clover 3.1

31 May 2011
Java 1.7 Support
Maven 3 Support
Groovy 1.6-1.8 Support for Ant, Maven 2 and
Grails
Clover-for-Grails Plugin for Grails 1.3.7
Support for Eclipse 3.6 and 3.7
Support for Intellij 10.5 and 11
Bug fixes and improvements

Read the .Clover 3.1 release notes

Clover 3.0

31 March 2010
Groovy Support for Ant, Maven 2 and Grails
New Clover-for-Grails Plugin
Per-Test Coverage Viewer for Eclipse
New Dashboard View in Eclipse
Updated Tutorial with Groovy Code
Other Enhancements and Improvements
Over 50 bug fixes and improvements

Read the .Clover 3.0 release notes

Clover 2.6

9 Sept 2009
New Clover Editions
Eclipse Plugin Performance Improvements
IDE Plugin Ease-of-Use Features
100% Coverage filter
New HTML Tree Map
New API for Optimizing Tests Programatically
Clover Auto-Update Feature for IDEA

Read the .Clover 2.6 release notes

Clover 2.5

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CLOVER/Clover+3.0+Release+Notes#Clover3.0ReleaseNotes-GroovySupportforAnt,Maven2andGrails
https://confluence.atlassian.com/display/CLOVER/Clover+3.0+Release+Notes#Clover3.0ReleaseNotes-Over50bugfixesandimprovements

Documentation for Clover 4.0 381

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

11 May 2009
Test Optimization in Clover for Eclipse and IDEA
Distributed Per-Test Coverage
Performance Improvements

Read the .Clover 2.5 release notes

Clover 2.4

5 Nov 2008
Test Optimization
Easier Integration
Reporting Improvements
Clover-for-IDEA final release

Read the .Clover 2.4 release notes

Clover 2.3

9 May 2008
New options for Movers report
New <added> tag
15 fixes and revisions

Read the .Clover 2.3 release notes

Clover 2.2

10 April 2008
New visualisations for Dashboard
Stack trace navigation in reports
Better cross-referencing in reports
Configure Clover to warn you or fail your build
when your coverage drops

Read the Clover 2.2 .release notes

Clover 2.1

14 Feb 2008
Configurable metrics reporting
Per-package coverage clouds
Historical charting
Enhanced 'movers' section
Per-test coverage for merged databases
Greatly improved performance

Read the Clover 2.1 release notes: and Ant Eclipse

Clover 2.0

17 Oct 2007
Coverage by test case
Test results integrated with reports
'Coverage Cloud' reports
Linked, cross-referenced reports
Context filters
Method-level metrics
Sortable columns
Streamlined Ant integration and simplified Ant
tasks
Eclipse plugin and Maven 2 plugin

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/x/iYVEB
http://confluence.atlassian.com/x/CoHOBw

Documentation for Clover 4.0 382

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Inline help

Read the Clover 2.0 release notes

Upgrade Guides

Clover-for-Ant Upgrade Guide
Clover-for-Eclipse Upgrade Guide
Clover-for-IDEA Upgrade Guide
Clover-for-Maven 2 and 3 Upgrade
Guide

Changelogs

Information about changes in minor versions
can be found here:

Clover-for-Ant Changelog
Clover-for-Eclipse Changelog
Clover-for-IDEA Changelog
Clover-for-Maven 2 and 3 Changelog
Clover-for-Grails Changelog

Clover 4.0 Release Notes
11 July 2014

We are happy to announce .Clover 4.0
 brings completely redesigned HTML report following the (ADG).Clover 4.0 Atlassian Design Guidelines

Upgrading to Clover 4.0 is free for all customers with active Clover software maintenance at the date of launch
and of subsequent updates.
Highlights of Clover 4.0:

New ADG HTML report

Changes in Clover 4.0.x bug-fix versions

This page describes new features of Clover . For changes in bug-fix releases, please refer to4.0 4.0.x
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog
Clover-for-Grails | Changelog

Highlights of Clover 4.0

New ADG HTML report

Clover 4.0 brings completely redesigned HTML report with new page layout, navigation, fonts and colours. All
according to the .Atlassian Design Guidelines

Project overview - dashboard

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Clover+2.0+Release+Notes
https://developer.atlassian.com/design/latest
http://www.atlassian.com/software/clover/download
https://developer.atlassian.com/design/latest

Documentation for Clover 4.0 383

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

On the project overview page you will find several tabs, thanks to which you can quickly learn about your project:

Dashboard - contains several widgets with statistics and most critical issues
Application code - browse through application classes
Test code - browse through test classes
Test results - contains results from your unit tests
Top risks - the most complex and the least covered classes
Quick wins - "low hanging fruits"
Coverage tree map

You can also use a package tree view with a search box to quickly jump to a package you're interested in.

Project overview and a package overview pages

A content is similar to the old report.

In addition, you can easily switch between the separated and aggregated code metrics (on a project overview
page).

'Top risks' and 'Quick wins' tag clouds

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 384

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Tags have a new colour palette (shades of red instead of a red-blue gradient). You can also open a help box
explaining how code metrics are visualized.

Coverage tree map

Tree map also has a new colour palette (shades of red instead of a green-black-red gradient).

Source file view

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 385

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The "Show methods" link opens a modal dialog with class details. In the "Select tests to highlight the test
coverage" dialog you can see all tests hitting given source file; you can also select them to see per-test
coverage. In these dialog boxes you can also quickly filter methods and tests matching given string:

Historical report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 386

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The historical report has been "ADG-ified" as well.

In case you generate several linked reports, you can easily switch between them via the "Linked reports" drop
down.

Learning new ADG report

If you'd like to learn where elements from an old report are placed in the new one and how to navigate between
them, see:

A side-by-side comparison of the Classic and the ADG HTML report.

Upgrading from Clover 3.3 to Clover 4.0

When upgrading from Clover 3.3 to Clover 4.0, you may need to make few changes in your build scripts.

1) Clover JAR has been renamed from to com.cenqua.clover:clover com.atlassian.clover:clover

This JAR is being used for compilation and runtime. It's a dependency of Clover-for-Maven plugin (com.atlassian
) and Clover-for-Grails plugin However, your.maven.plugins:maven-clover2-plugin (org.grails.plugins:clover).

Maven or Grails scripts may have a dependency to this Clover JAR declared explicitly - especially when you're
running in-container tests or spawning new JVMs in a build.

You have to use a following dependency in Maven's pom.xml:

<dependency>
 <groupId>com.atlassian.clover</groupId> <!-- com.cenqua.clover for Clover 3.x
-->
 <artifactId>clover</artifactId>
 <version>4.0.0</version>
</dependency>

or in Grails' grails-app/conf/BuildConfig.groovy:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 387

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

grails.project.dependency.resolution = {
 plugins {
 compile 'org.grails.plugins:clover:4.0.0'
 }
 dependencies {
 compile 'com.atlassian.clover:clover:4.0.0' // com.cenqua.clover for Clover
3.x
 }
}

2) Clover's database file format has changed.

You may need to delete existing Clover database files. In most typical environment configurations it will be done
automatically (for instance, by Maven's goal). There is to delete or clean no need test optimization snapshots hi
story points.

3) Clover no longer supports JDK5.

You have to use at least JDK6 for both compilation and runtime. Please note, that Clover still supports Java
1.3-1.5 language levels (, for instance).<clover-setup source="1.4"/>

4) Deprecated Ant types have been removed

Since Clover 3.2, the Ant 1.6.5 is no longer supported. In Clover 4.0, we've deleted Ant 1.6-specific types, such
as the use the instead.<clover-optimized-selector> - <clover-optimized-testset>

5) The has been merged into cloverjunitlib.xml cloverlib.xml

This file contained definitions of Ant 1.7+ types, such as . You can find these<clover-optimized-testset>
definitions in cloverlib.xml now. Example:

<taskdef resource="cloverlib.xml" classpath="clover.jar"/>

6) Clover-for-Eclipse features and plugins have new IDs.

They have been renamed from com.cenqua.*** to com.atlassian.***. Because of this, when upgrading, you have
to:

disable Clover on your projects -("Package Explorer -> context menu -> Clover -> Enable/Disable on...")
this is necessary to remove "Clover Pre-Java Builder" and "Clover Post-Java Builder",
uninstall previous version of Clover and next install the Clover-for-Eclipse 4.x (otherwise you will end up
with two Clover versions in one Eclipse),
enable Clover on your projects.

A side-by-side comparison of the Classic and the ADG HTML report

This page shows a side-by-side comparison of Clover's HTML report generated with a "classic" and "adg" style
setting.

This page may be helpful for you to quickly learn how to navigate through a new ADG report and how to find
information you were used to see in the old "Classic" one.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 388

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Project overview

Most of links from the top-left pane have been moved to tabs. Two tabs ("Top risks" and "Quick wins") which
were accessible through a cloud icon (5, 6) in the old report are now accessible directly.

Package view

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 389

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 390

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The bottom-left frame with "Classes", "Tests" and "Results" tabs has been removed - instead of this, "Application
code", "Test code" and "Test results" tabs are available in the main view (2, 6). A flat list of packages has been
replaced by a package tree (1). A "Clouds" link and icon became "Top risks" and "Quick wins" tabs (4).

Source file view

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 391

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 392

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The "Overview Package File" links are replaced by the breadcrumbs (1). List of methods of a certain class as
well as list of tests hitting the source file are shown in dialogs, which you can open by clicking "Show methods"
and "Select tests ... " links (5,6).

Test results view

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 393

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Navigation between a test class (source code) and test results (e.g. from unit tests) has been improved - you
can simply switch tabs (1, 2). Test results for an entire project are available on the "Project overview" page,
under the "Test results" tab (3).

Clover 3.3 Release Notes
31 March 2014

We are happy to announce .Clover 3.3
 adds support for the Spock framework and JUnit4's parameterized tests.Clover 3.3

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 394

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading to Clover 3.3 is free for all customers with active Clover software maintenance at the date of launch
and of subsequent updates.
Highlights of Clover 3.3:

Spock framework support
JUnit4 parameterized tests support
New toggle in report wizards in Eclipse and IDEA

Changes in Clover 3.3.x bug-fix versions

This page describes new features of Clover . For changes in bug-fix releases, please refer to3.3 3.3.x
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog
Clover-for-Grails | Changelog

Highlights of Clover 3.3

Spock framework support
The is one of the best unit testing frameworks compatible with JUnit and based on the GroovySpock framework
language. You can write beautiful yet powerful tests, including but not limited to: data series, mocking, behaviour
testing and detailed reporting about
failed assertions.

Automatic detection of Spock's Specifications

Clover 3.3 comes with a new test detector, which handles Spock's Specifications. It means that you will see
Specifications on the tab and you will no longer have to configure a to treat them as"Tests" custom test pattern
test code.

Handling static test names as declared in the code

In the Spock framework tests are defined using a descriptive caption, such as: def "this is my test" { ... }
Under the hood, Spock transforms such code into methods named like . Clover 3.3“$spock_feature_n_m”
handles these statically-
defined names, so you can see them on a method list.
Screen shot: Clover displays descriptive test name instead of the cryptic "$spock_feature_n_m".

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/download
https://code.google.com/p/spock/
https://confluence.atlassian.com/display/CLOVER/clover-setup#clover-setup-Testsources

Documentation for Clover 4.0 395

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Handling runtime test names and the @Unroll annotation

The Spock framework allows to define a data series and to run the same test multiple times using different
inputs. But how to detect which iteration has failed among hundreds of test iterations which were run? The
Spock comes with a solution – the annotation appends a sequence number to a test name.@Unroll
Furthermore, you can define variables or even use Groovy selectors in it. For instance:

def "minimum of #a and #b is #c"() { ... }
def "#person.name is a #sex.toLowerCase() person"() { ... }

Clover 3.3 tightly integrates with Spock’s test runner so that in the HTML report you can see test names exactly
as they were evaluated by Spock.
Screen shot: Clover 3.3 knows test names at runtime as evaluated by Spock for each test iteration.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 396

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

JUnit4 parameterized tests support

Similarly to the Spock support, Clover 3.3 can record runtime test names for JUnit4 test classes annotated with
 annotation. This integration is not automatic, however. See the @Parameterized Integrating Clover with JUnit4

 article.Parameterized Tests

New toggle in report wizards in Eclipse and IDEA

The 'Show lambda functions' toggle allows to show Java 8 lambda functions in HTML and XML reports.

Note that other Clover integrations (such as with Ant, Maven or Grails) have this feature available since Clover
3.2, but it has to be configured using different options (showLambdaFunctions and). showInnerFunctions

Upgrading from Clover 3.2 to Clover 3.3

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 397

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover 3.3 is backward-compatible with Clover 3.2 When upgrading, you may need to delete existing Clover.
database files due to changes in the database format. In most typical environment configurations it will be done
automatically (for instance, by Maven's goal).clean

Clover 3.2 Release Notes
21 October 2013

We are happy to announce .Clover 3.2
 adds support for Java 1.8 language constructs, including instrumentation of lambda expressions andClover 3.2

virtual extension methods (the "default" methods) in interfaces. New language constructs can be shown in
HTML, XML, PDF or JSON report.

Upgrading to Clover 3.2 is free for all customers with active Clover software maintenance at the date of launch
and of subsequent updates.
Highlights of Clover 3.2:

Java 1.8 Support
Extended HTML and XML reports
Extended API for plug-in developers
Dropped support for Eclipse 3.4, 3.5 and RAD
7.5.
Added support for Eclipse 4.3 (Kepler) and RAD
8.5
Dropped support for Ant 1.6.x

Changes in Clover 3.2.x bug-fix versions

This page describes new features of Clover . For changes in bug-fix releases, please refer to3.2 3.2.x
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog
Clover-for-Grails | Changelog

Highlights of Clover 3.2

Java 1.8 Support

Clover 3.2 now provides support for the such as lambda functions, methodJava 1.8 language features
references, virtual extension methods or repeating annotations. It is possible to instrument lambda functions and
method references and measure code coverage for them. It is also possible to see lambda functions in HTML
and XML reports as well as in a source code editor window in the IntelliJ IDEA (version 12 or later). Code
metrics (such as number of statements, number of methods, cyclomatic complexity etc) also take into account
lambda expressions.

Extended HTML and XML reports

In Clover 3.2 you can see lambda functions declared in a method body or as a class field in HTML report as well
as see a lambda function signature in a <line> tag in XML report. Just use <clover-report> task with showLambd

 and options. aFunctions=true showInnerFunctions=true

Screen shot: an HTML report with lambda functions declared inside methods (and showLambdaFunctions=true s
):howInnerFunctions=true

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://openjdk.java.net/projects/lambda

Documentation for Clover 4.0 398

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Screen shot: a dashboard showing a lambda function in the "Least Tested Methods" section (showLambdaFunct
):ions=true

Screen shot: code coverage highlighting and tool-tip markers for lambda functions in IntelliJ IDEA 12

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 399

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Extended API for plug-in developers

Clover 3.2 comes with an extended Clover API (and even more will come in next minor releases). It allows to
navigate more easily through the Clover database structure. See https://docs.atlassian.com/atlassian-clover/late

 JavaDoc documentation.st

Dropped support for Eclipse 3.4, 3.5 and RAD 7.5.

Due to fact that Eclipse 3.6 is the lowest Eclipse version officially tested on JDK1.5, we decided to drop support
for older Eclipse versions. Clover 3.2 may still work on them, but it is not guaranteed.

Added support for Eclipse 4.3 (Kepler) and RAD 8.5

The latest Eclipse and RAD versions available at the date of the Clover 3.2 release are supported.

Please note that Eclipse 4.3 does not support Java 8 yet - the most probably it will be available in Eclipse 4.4.

Dropped support for Ant 1.6.x

Clover 3.2.0 does no longer support the Ant 1.6.x officially. It may still work with Ant 1.6.x, but it is not
guaranteed.

Upgrading from Clover 3.1 to Clover 3.2

Clover 3.2 is generally backward-compatible with Clover 3.1, and the migration should be straightforward.

However, there are few issues breaking the backward compatibility:

1) CloverInstr

Deprecated command line options , and have been removed. Use the instead -jdk14 -jdk15 -jdk17 --source=1.x
of this.

2) HTMLReporter

Deprecated command line option has been removed. Use in order to see-nu/--nounique --showunique/-su
unique per-test coverage in the report. Deprecated option has been removed.-r/--resultsdir

3) PDFReporter

The option was renamed to to make it consistent with the XMLReporter.--outputfile --outfile

4) Clover classes were renamed from to . com.cenqua.* com.atlassian.*

It affects all classes in Clover core . This class rename should be transparent to build(com.cenqua.clover:clover)
scripts (Ant / Maven / Grails) unless your build scripts or tools are referencing these classes directly. In such
case rename references as follows:

Ant tasks - from to com.cenqua.clover.tasks.* com.atlassian.clover.ant.tasks.*
Ant types - from to com.cenqua.clover.types.* com.atlassian.clover.ant.types.*
CloverInstr, CloverMerge - from to com.cenqua.clover.* com.atlassian.clover.*
HtmlReporter, XMLReporter, JSONReporter, PDFReporter - from to com.cenqua.clover.reporters.* com.a

.tlassian.clover.reporters.*

http://creativecommons.org/licenses/by/2.5/au/
https://docs.atlassian.com/atlassian-clover/latest
https://docs.atlassian.com/atlassian-clover/latest

Documentation for Clover 4.0 400

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

SnapshotPrinter - from to com.cenqua.clover.test.optimization.SnapshotPrinter com.atlassian.clover.opti
mization.SnapshotPrinter.

Clover 3.1 Release Notes
31 May 2011

With great pleasure Atlassian presents .Clover 3.1
 adds support for Java 1.7 language constructs, Maven 3, Groovy 1.7 & 1.8, Grails 1.3.7, Eclipse 3.6Clover 3.1

and 3.7 and Intellij IDEA 10.5 and 11.

Upgrading to Clover 3.1 is free for all customers with active Clover software maintenance at the date of launch
and of subsequent updates.
Highlights of Clover 3.1:

Java 1.7 Support
Maven 3 Support
Groovy 1.6-1.8 Support for Ant, Maven 2 and
Grails
Clover-for-Grails Plugin for Grails 1.3.7
Support for Eclipse 3.6 and 3.7
Support for Intellij 10.5 and 11
Bug fixes and improvements

Changes in Clover 3.1.x bug-fix versions

This page describes new features of Clover . For changes in bug-fix releases, please refer to3.1 3.1.x
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog
Clover-for-Grails | Changelog

Highlights of Clover 3.1

Java 1.7 Support

Clover 3.1 now provides support for the including try resource blocks, multi-catchJava 1.7 language features
statements, diamond generics syntax, binary numeric literals and numeric literals with underscores.

Maven 3 Support

Clover 3.1 now supports recording and reporting code coverage in all your Maven 3 projects. Check out the Clov
 er-for-Maven plugin.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://openjdk.java.net/projects/coin/

Documentation for Clover 4.0 401

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Groovy 1.6-1.8 Support for Ant, Maven 2 and Grails

Ant and Maven 2 plugins now provide support for 1.6 through to 1.8. Most will workGroovy Clover-for-Ant tasks
on Groovy code and the Clover-for-Maven 2 plugin now supports Groovy code compilation and report
generation.

Read more: and .Clover-for-Ant Upgrade Guide Upgrade Notes for Clover-for-Maven 2 Groovy Integration

 Unless otherwise indicated, all tasks described in the work with Groovy code.Clover-for-Ant User's Guide

Groovy Code Coverage Reporting

Clover's reporting features support Groovy code, which includes and other reporting featuresper-test coverage
available in .Ant and Maven 2

Furthermore:

Clover will only report a line that contains Groovy's safe operator as covered if the check evaluated to
both true and false.
Clover also supports filtering specified Groovy methods.

Screenshot: Clover Groovy Code Coverage

Screenshot: Clover Filtering Specified Groovy Methods

http://creativecommons.org/licenses/by/2.5/au/
http://groovy.codehaus.org/
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Upgrade+Notes+for+Clover-for-Maven+2+and+3+Groovy+Integration&linkCreation=true&fromPageId=241567336

Documentation for Clover 4.0 402

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover-for-Grails Plugin for Grails 1.3.7

Clover 3.1 incorporates a plugin for the supporting Grails versionGrails web application development framework
1.3.7. Grails project developers can test their Groovy code using Clover to generate coverage reports.

The Clover-for-Grails plugin is very easy to install and upgrade, with multiple installation options that can be
issued from a single Grails command. Upgrading is as easy as reinstalling the Clover-for-Grails plugin.

You can configure the Clover-for-Grails plugin on the command line or by including Clover-for-Ant-based ()Gant
instructions directly inside the file.BuildConfig.groovy

Read more: , Clover-for-Grails Clover-for-Grails Installation Guide

Screenshot: Clover Report Dashboard of a Grails Project

http://creativecommons.org/licenses/by/2.5/au/
http://www.springsource.com/products/grails
http://gant.codehaus.org/

Documentation for Clover 4.0 403

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Support for Eclipse 3.6 and 3.7

The Clover-for-Eclipse plugin now supports Eclipse 3.6 and 3.7. Eclipse does not yet support Java 1.7 language
features but Clover-for-Eclipse is ready once it does.

Support for Intellij 10.5 and 11

The Clover-for-IDEA plugin now supports Intellij 10.5 and 11 including support for Java 1.7 language features.

Screenshot: Clover-for-IDEA with a project using Java 1.7 language features

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 404

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Bug fixes and improvements

See the for details.changelog

Clover 3.0 Release Notes
31 March 2010

Atlassian presents Clover 3.0
 is a major release which adds Groovy support for Ant, Maven 2 and Grails. We also offer the newClover 3.0

Clover-for-Grails plugin that allows you to use Clover's code coverage capabilities directly inside your Grails
project. Furthermore, we add a new per-test coverage viewer and completely new dashboard view to Eclipse.

Upgrading to Clover 3.0 is free for all customers with active Clover software maintenance at the date of launch.
Highlights of Clover 3.0:

Groovy Support for Ant, Maven 2 and Grails

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 405

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

New Clover-for-Grails Plugin
Per-Test Coverage Viewer for Eclipse
New Dashboard View in Eclipse
Updated Tutorial with Groovy Code
Other Enhancements and Improvements
Over 50 bug fixes and improvements

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

Upgrading to Clover 2.6

Clover 2.6 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog

Highlights of Clover 3.0

Groovy Support for Ant, Maven 2 and Grails

Clover 3.0 Ant and Maven 2 plugins now provide support for . Most willGroovy Clover-for-Ant tasks
now work on Groovy code and the Clover-for-Maven 2 plugin now supports Groovy code compilation
and report generation.

Read more: and Clover-for-Ant Upgrade Guide Upgrade Notes for Clover-for-Maven 2 and 3 Groovy
.Integration

 Unless otherwise indicated, all tasks described in the work withClover-for-Ant User's Guide
Groovy code.

Groovy Code Coverage Reporting

Clover's reporting features support Groovy code, which includes and otherper-test coverage
reporting features available in .Ant and Maven 2

Furthermore:

Clover will only report a line that contains Groovy's safe operator as covered if the check
evaluated to both true and false.
Clover also supports filtering specified Groovy methods.

Screenshot: Clover Groovy Code Coverage

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+3.0.0+for+Ant&linkCreation=true&fromPageId=214865077
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+3.0.0+for+Maven+2&linkCreation=true&fromPageId=214865077
http://groovy.codehaus.org/
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Upgrade+Notes+for+Clover-for-Maven+2+and+3+Groovy+Integration&linkCreation=true&fromPageId=214865077
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Upgrade+Notes+for+Clover-for-Maven+2+and+3+Groovy+Integration&linkCreation=true&fromPageId=214865077

Documentation for Clover 4.0 406

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Screenshot: Clover Filtering Specified Groovy Methods

New Clover-for-Grails Plugin

Clover 3.0 now incorporates a new plugin for the .Grails web application development framework
Grails project developers can now test their Groovy code using Clover to generate coverage reports.

The Clover-for-Grails plugin is very easy to install and upgrade, with multiple installation options that
can be issued from a single Grails command. Upgrading is as easy as reinstalling the
Clover-for-Grails plugin.

You can configure the Clover-for-Grails plugin on the command line or by including

http://creativecommons.org/licenses/by/2.5/au/
http://www.springsource.com/products/grails

Documentation for Clover 4.0 407

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover-for-Ant-based () instructions directly inside the file.Gant BuildConfig.groovy

Read more: , Clover-for-Grails Clover-for-Grails Installation Guide

Screenshot: Clover Report Dashboard of a Grails Project

Per-Test Coverage Viewer for Eclipse

The Clover-for-Eclipse plugin includes a new inline per-test coverage viewer. Hovering over the
gutter now displays a pop-up with a list of tests that hit that line. Clicking on a test will take you
directly to the test source code.

Screenshot: New Clover-for-Eclipse per-test coverage pop-up

http://creativecommons.org/licenses/by/2.5/au/
http://gant.codehaus.org/

Documentation for Clover 4.0 408

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

New Dashboard View in Eclipse

For the first time, the Clover Report Dashboard is now available in Eclipse!

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 409

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Updated Tutorial with Groovy Code

The existing 'Money Demo' tutorial (located in) has been updated withCLOVER_HOME/tutorial
additional Groovy code for Ant and Maven 2. The Ant () and Maven 2 (build_completed.xml pom

) tutorial solution files contain examples of Groovy integration._completed.xml

For Ant builds, your Groovy code will automatically be compiled if the environmentGROOVY_HOME
variable has been set and points to the location of your Groovy directory.

Read more: Clover-for-Ant tutorial

Other Enhancements and Improvements

Clover-for-Maven 2

The task now has two new parameters: and clover2:check methodPercentage conditionalPer
. These parameters allow you to set target percentages that define when to fail the build forcentage

methods and conditions, respectively.

 Be aware that these will only be used if has been set.maven.clover.targetPercentage

For more information, please refer to the .Clover-for-Maven 2 and 3 User's Guide

Clover XML Reports

The Clover XML report now includes test results and Clover ships with an XML schema (XSD) for
these reports.

Over 50 bug fixes and improvements

See the for details.changelog

Clover 2.6 Release Notes
9 September 2009

Atlassian presents Clover 2.6

Clover 2.6 is a major release which adds an affordable Desktop Edition to the Eclipse and IDEA plugins. It also
brings a new coverage filter, auto-update functionality in IDEA, adds a visual treemap report to Clover-for-Ant
and Maven2, as well as signicant performance enhancements for Eclipse users.

Upgrading to Clover 2.6 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.6:

New Clover Editions
Eclipse Plugin Performance Improvements
IDE Plugin Ease-of-Use Features
100% Coverage filter
New HTML Tree Map
New API for Optimizing Tests Programatically
Clover Auto-Update Feature for IDEA
Over 80 bug fixes and improvements

http://creativecommons.org/licenses/by/2.5/au/
http://docs.atlassian.com/maven-clover2-plugin/3.0.0/check-mojo.html
https://confluence.atlassian.com/display/CLOVER030/Changes+in+3.0.0+for+Ant

Documentation for Clover 4.0 410

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

Upgrading to Clover 2.6

Clover 2.6 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog

Highlights of Clover 2.6

New Clover Editions

Clover licences now add an affordable Desktop Edition to the line-up. Clover Desktop Edition is for
individual developers and provides code coverage analysis and also the use of test optimization for
developers working in isolation. Clover Server edition contains the full suite of report generation and
Continuous Integration features for coding in a team environment.

Read more: About Clover Editions

Eclipse Plugin Performance Improvements

The Clover database format has been completely rewritten to make running Clover in an IDE as fast
as possible. Large code bases, such as JIRA and Confluence, have shown a significant reduction in
the time it takes to compile source code and run tests with Clover enabled - so much so that you will
hardly know that Clover is there!

IDE Plugin Ease-of-Use Features

A new context menu has been added to the package explorer to make including or excluding files
and packages quick and easy. For large projects, this makes it possible to turn Clover on or off for a
specific package or class, run the tests, view the coverage and then turn Clover off again.

Read more: Clover-for-IDEA User's Guide

100% Coverage filter

When some of your files have reached 100% coverage, you can remove them from view using this
new filter. This allows you to reduce the clutter in the display and see only those files that are not
completely covered by unit tests.

Read more: Clover-for-IDEA User's Guide

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+2.6.0+for+Ant&linkCreation=true&fromPageId=200706860
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+2.6.0+for+Maven+2&linkCreation=true&fromPageId=200706860
http://confluence.atlassian.com/display/CLOVER/Clover-for-IDEA+User%27s+Guide#Clover-for-IDEAUser%27sGuide-Instrumentation

Documentation for Clover 4.0 411

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

New HTML Tree Map

The popular Tree Map feature from Clover for Eclipse and Clover for IDEA is now available in Clover
for Ant and Clover for Maven, showing a geometric view of coverage in coloured squares, with size
indicating the scale of each file. The new HTML Tree Map allows you to easily spot not only poorly
tested, large classes but also identify clusters of untested code.

Read more: Treemap Charts

New API for Optimizing Tests Programatically

This new addition to Clover will allow you to take advantage of Clover's Test Optimization feature,
only running those tests for which code has changed, even if you are using a testing framework other
than Junit or TestNG.

Read more: Clover Development Hub

Clover Auto-Update Feature for IDEA

Clover for IDEA will now automatically check for new version updates. This allows you to easily stay
on the leading edge of Clover's latest features. When a new version is available, a Clover icon
appears in the status bar, allowing you to install it by clicking.

Read more: Clover-for-IDEA Auto-Updates

Over 80 bug fixes and improvements

See the for details.changelog

Clover 2.5 Release Notes
11 May 2009

Atlassian presents Clover 2.5

Clover 2.5 is a major release with a key new feature called Distributed Per-Test Coverage, which will allow you
to optimize your functional tests. It also brings the breakthrough recent feature Test Optimization to the Eclipse
and IntelliJ IDEA development environments.

Upgrading to Clover 2.5 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.5:

Test Optimization in Clover for Eclipse and IDEA
Distributed Per-Test Coverage
Performance Improvements
Over 20 bug fixes and improvements

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Treemap+Charts&linkCreation=true&fromPageId=200706860
http://confluence.atlassian.com/display/CLOVER/Clover+Development+Hub
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+2.6.0+for+Ant&linkCreation=true&fromPageId=200706860
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa

Documentation for Clover 4.0 412

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading to Clover 2.5

Clover 2.5 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog

Highlights of Clover 2.5

Test Optimization in Clover for Eclipse and IDEA

Clover's much-lauded feature called Test Optimization is now available in Clover for Eclipse and
Clover for IntelliJ IDEA, bringing the ability to run only the tests that have been affected by changes
to program code. In many cases this will cut down the running time of your test phases and allow you
to run them far more often. This is in sharp contrast with the traditional 'shotgun testing' which
indiscriminately runs every single test, regardless of whether any code within has changed.

Read more: About Test Optimization

Distributed Per-Test Coverage

With the new Distributed Per-Test Coverage feature, Clover now has the ability to record per-test
coverage from tests that are running in separate test JVMs, which may be co-sited or distributed
around a network. This allows you to roll together results from unit and functional tests, from JVMs
running different test frameworks, possibly in remote locations, yet resulting in a single unified view of
your project's code coverage.

This feature also allows you to run Clover's famous Test Optimization on your functional tests. A
battery of functional tests (being generally more time-consuming than unit tests) strongly benefits
from the ability to run only the tests on code which has changed.

Read more: About Distributed Per-Test Coverage

Performance Improvements

Clover 2.5 is significantly faster than previous versions, supporting a range of
performance-enhancing settings. Clover can now be configured to gather information only at the level
at which you need it, making it faster.

Read more: Clover Performance Tuning

Over 20 bug fixes and improvements

See the for details.changelog

Clover 2.4 Release Notes
5 November 2008

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+2.5.0+for+Ant&linkCreation=true&fromPageId=184550154

Documentation for Clover 4.0 413

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Atlassian presents Clover 2.4

Clover 2.4 is a major release with a significant new feature called Test Optimization, along with a number of
improvements and bug fixes.

Upgrading to Clover 2.4 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.4:

Test Optimization
Easier Integration
Reporting Improvements
Clover for IDEA
Over 35 bug fixes and improvements

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

Upgrading to Clover 2.4

Clover 2.4 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant | Changelog
Clover-for-Maven 2 and 3 | Changelog
Clover-for-IDEA | Changelog
Clover-for-Eclipse | Changelog

Highlights of Clover 2.4

Test Optimization

In the new Test Optimization feature, Clover now has the ability to optimise test runs, which greatly
reduces the time taken to test a code change. Traditionally, the full suite of tests is run whenever a
small code change is made. Now, for a given edit, Clover works out the optimal subset of tests that
will exercise that change. Running the optimal subset is in general dramatically faster than running
the full test suite. This means that developers are more likely to run tests prior to committing, and
Continuous Integration servers can get through far more build and test cycles. This means faster
feedback to developers when their code changes break tests.

Read more: , Ant Maven2

Easier Integration

Integration with Ant is now as simple as adding:

 <taskdef resource="cloverlib.xml" classpath="/path/to/clover.jar"/>
<clover-env/>

to your build.xml and ensuring that the clover.jar is on your test classpath. automati<clover-env/>

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://confluence.atlassian.com/display/CLOVER/Using+Test+Optimization+with+Clover-for-Maven+2

Documentation for Clover 4.0 414

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

cally defines all the targets you need to have Clover seamlessly integrated with your build.

The clover-maven2-plugin can be run outside the forked-lifecycle - removing the need to have unit
tests run twice.

Reporting Improvements

New columns have been added: and PercentageCoveredContribution PercentageUncoveredCon
 - showing the percentage of coverage a particular class contributes to the overall project.tribution

Also the new column shows the amount of code that has been filtered from aFilteredElements
coverage report. Custom contexts, allowing arbitrary blocks of code to be filtered from reports, are
now supported by the maven-clover2-plugin. Historical Charts will now auto-scale depending on the
data and have have had a color change - making them look less like something rendered in a 1986
era arcade game.

Clover for IDEA

Clover2 for IDEA is now fully featured and final. Easily find where to add your next test using
Clover2's per-test coverage. Spot potential project risks by using the 'coverage clouds' and 'coverage
tree map' visualisations - directly in your IDE. to select the current class you are viewing inALT-F1
the Coverage Explorer.

Over 35 bug fixes and improvements

See the for details.changelog

Clover 2.3 Release Notes
9 May 2008

Atlassian presents Clover 2.3

This is a release with a number of new features and bug fixes.

Upgrading to Clover 2.3 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.3:

New options for Movers report
New <added> tag
15 fixes and revisions

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Changes+in+2.4.0+for+Ant&linkCreation=true&fromPageId=166005242
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa

Documentation for Clover 4.0 415

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading to Clover 2.3

Clover 2.3 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant Upgrade Guide | Changelog

Highlights of Clover 2.3

New options for Movers report

More options are now available for generation of the Clover 'movers' report. Users can now define
arbitrary metrics to detect movers.

.Read more

New <added> tag

This new tag is for viewing coverage of newly added classes. It's now possible to keep track of
classes newly added to your project, via the historical report.

15 fixes and revisions

See the for details.Changelog

Clover 2.2 Release Notes
10 April 2008

Atlassian presents Clover 2.2

Clover 2.2 allows you to improve your coverage reporting with stack trace navigation, better cross-referencing
and Dashboard visualisations. The IDE and build-tool variants of Clover will also see a prominent upgrade on
release.

Upgrading to Clover 2.2 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.2:

New visualisations for Dashboard
Stack trace navigation in reports
Better cross-referencing in reports
Don't go backwards

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-Columns
http://confluence.atlassian.com/display/CLOVER/Changes+in+2.3.0+for+Ant
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa

Documentation for Clover 4.0 416

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading to Clover 2.2

Clover 2.2 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant Upgrade Guide | Changelog
Clover-for-Eclipse Upgrade Guide | Changelog
Clover-for-Maven 1 Upgrade Guide | Changelog

Highlights of Clover 2.2

New visualisations for Dashboard

Clover 2.2 adds new histogram charts, which show coverage distribution across all your project's
classes. A new scatter plot shows complexity against coverage, making outlying classes easier to
spot. A sparkline version of the histogram chart is also included.

Stack trace navigation in reports

This feature will help you diagnose test failures and the lines of code where the failure occurred.
Relevant lines of source files are annotated, marking them to indicate that a failure occurred at that
point. A pop-up dialog shows the full trace or a few lines of context (stack lines) on either side, plus
information about which test(s) failed there.

Better cross-referencing in reports

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Clover-for-Maven+1+Upgrade+Guide&linkCreation=true&fromPageId=137265305
https://confluence.atlassian.com/pages/createpage.action?spaceKey=CLOVER&title=Clover-for-Maven+1+Changelog&linkCreation=true&fromPageId=137265305

Documentation for Clover 4.0 417

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Source reports now have much better cross-referencing, providing class identifier linking.

Don't go backwards

Clover can now be configured to warn you (and optionally fail your build) when your coverage drops.
In this way, you can ensure that your code coverage is maintained or improves over time.

Clover 2.1 Release Notes
14 February 2008

Atlassian Software Systems presents Clover 2.1

Clover 2.1 allows you to tailor your coverage reporting even more closely to your needs. Configurable risk
metrics let you choose an algorithm that matches your definition of a project risk. 'Coverage Clouds' are now
available for every individual package. Building on the per-test coverage that was introduced in Clover 2.0, in
Clover 2.1 reports from merged databases now include per-test coverage data.

Additionally, a whole range of advanced charting options are available. Clover historical reports are now much
more configurable, especially the charts and movers section. You can now customise which data gets shown,
where.

Upgrading to Clover 2.1 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.1:

Per-test coverage for merged databases
Per-package coverage clouds
Historical charting
Enhanced 'movers' section
Clover expression language
New SUM metric

Thank you for your feedback:

Your votes and issues help us keep improving our
products, and are much appreciated.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa

Documentation for Clover 4.0 418

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Upgrading to Clover 2.1

Clover 2.1 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant documentation:

Clover-for-Ant Upgrade Guide | Changelog
Clover-for-Eclipse Upgrade Guide | Changelog
Clover-for-Maven 2 and 3 User's Guide | Changelog

Highlights of Clover 2.1

Per-test coverage for merged databases

You can now see what tests hit what code, even when generating combined reports across multiple
databases.
Read more

Per-package coverage clouds

Coverage clouds are now available at the package level, allowing you to compare classes within a
specific package. This is specifically aimed at large projects, which have multiple developers working
in different packages.

Historical charting

New charts have been added to reports. You now have complete control over series in thehistorical
charts.

Enhanced 'movers' section

Movers are classes which have either gained coverage or lost coverage. You can now define multiple
movers in a report, allowing you to easily spot them. For example, you could now show classes which
have changed in the last day, as well as classes that have changed in the last week.

Clover expression language

The new allows you to combine metrics in interesting ways, to deriveClover Expression Language
your own original metric.

New SUM metric

The new is a new column that provides a risk ranking, in much the same way that SUM Metric Crap4
 does.J

Clover 2.0 Release Notes

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-clover-report-Movers
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-CloverEL
https://confluence.atlassian.com/display/CLOVER/clover-report#clover-report-SUM
http://www.crap4j.org/
http://www.crap4j.org/

Documentation for Clover 4.0 419

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

17 October 2007

Atlassian Software Systems presents Clover 2.0

Clover 2 is a major rewrite that adds new and unique functionality to help your team get the most out of their
testing effort. We've augmented Clover's award-winning functionality by incorporating both test result and code
complexity statistics. The resulting reports give you powerful insight into your testing. You can now see not only
what sections of code were covered by your tests, but also . Clover's new 'Cloudwhat tests hit what code
reports' let you quickly and easily assess strengths and weaknesses in your testing suite, helping you to
prioritise your testing effort.

Clover 2 provides sophisticated source-level HTML reports. Quickly drill down into your test suite to see results
of individual tests, along with information about what code each test hit. From there you can click to see the
actual source lines hit by the test. In-page controls allow you to toggle the coverage annotations from all tests
that hit a particular class. At any line in the source you can click to get a popup showing all the tests that hit that
particular line, and their pass/fail status.

Upgrading to Clover 2.0 is free for all customers with active Clover software maintenance at date of launch.
Highlights of Clover 2.0:

Coverage by test case
Test results integrated with reports
'Coverage Cloud' reports
Linked, cross-referenced reports
Context filters
Method-level metrics
Sortable columns
Streamlined Ant integration and simplified Ant
tasks
Eclipse plugin and Maven 2 plugin
Inline help

A big 'Thank You' to our Clover 2 Beta Testers

Your helpful bug reports and feature suggestions have
been invaluable in shaping Clover 2. We thank you for
your patience during the beta process. If you'd like to
request a feature or report a bug, we'd love to hear from

.you

Your votes and issues help us keep improving our
products, and are much appreciated.

Upgrading to Clover 2.0

Clover 2.0 can be downloaded from the . Before upgrading, please refer toClover Download Centre
the relevant Upgrade Guide(s) and Changelog(s):

Clover-for-Ant Upgrade Guide | Changelog
Clover-for-Eclipse Upgrade Guide | Changelog

Highlights of Clover 2.0

Coverage by test case

Clover 4.0 has now been released. Read the and the latest Clover Release Notes Clover documentation
for information on the newest Clover release.

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com
http://jira.atlassian.com
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
https://confluence.atlassian.com/display/CLOVER

Documentation for Clover 4.0 420

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Each source file displays which tests hit which line of code. When you select a test case, the lines
that the test case executed are highlighted. Alternatively, when you click on a source line, the tests
that hit that line are displayed. .Read more

Test results integrated with reports

Test results (pass/fail/error) are now optionally integrated with the coverage report. Error traces are
hyperlinked to the relevant source line. .Read more

'Coverage Cloud' reports

These give an instant overview of specific aspects of your project. All classes in your project are
displayed on a single page and highlighted to inform you about project risks or potential coverage
improvements. .Read more

Linked, cross-referenced reports

Reports produced with the same task are automatically linked to each other. Source code is
cross-referenced for easy traversal between classes and up and down package hierarchies.

Context filters

Source code excluded by a is now highlighted grey and project, package and file levelcontext filter
statistics may be viewed with filtering either on or off.

Method-level metrics

Metrics at the method level are displayed both inline and in each class summary section.

Sortable columns

All tables in Clover 2 reports are client-side sortable.

Streamlined Ant integration and simplified Ant tasks

The new and tasks provide sensible defaults to< >clover-html-report < >clover-pdf-report
the existing task. The Clover is now optional. If not specified,< >clover-report initstring
Clover 2 will automatically create and manage the coverage database for you.

Eclipse plugin and Maven 2 plugin

Fully integrated plugins for and are available for Clover 2.0.Eclipse Maven 2

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 421

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Inline help

Help tooltips can be turned on for each page to describe metrics and controls.

Clover Release Summary

Clover 2.6 (9-September-2009)

New Clover Editions
Eclipse Plugin Performance Improvements
IDE Plugin Ease-of-Use Features
100% Coverage filter
New HTML Tree Map
New API for Optimizing Tests Programatically
Clover Auto-Update Feature for IDEA

Clover 2.5 (11-May-2009)

Test Optimization in Clover for Eclipse and IDEA
Distributed Per-Test Coverage
Performance Improvements

Clover 2.4 (5-Nov-2008)

Test Optimization
Easier Integration
Reporting Improvements
Clover-for-IDEA final release

Clover 2.2 (10-Apr-2008)

New visualisations for Dashboard
Stack trace navigation in reports
Better cross-referencing in reports
Configure Clover to warn you or fail your build when your coverage drops

Clover 2.1 (14-Feb-08)

Configurable metrics reporting
Per-package coverage clouds
Historical charting
Enhanced 'movers' section
Per-test coverage for merged databases
Greatly improved performance
More in release notes: and Ant Eclipse

Clover 2.0 (17-Oct-07)

Coverage by test case
Test results integrated with reports
'Coverage Cloud' reports
Linked, cross-referenced reports
Context filters
Method-level metrics
Sortable columns
Streamlined Ant integration and simplified Ant tasks
Eclipse plugin and Maven 2 plugin
Inline help
More in release notes

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/x/iYVEB
http://confluence.atlassian.com/x/CoHOBw
http://confluence.atlassian.com/display/CLOVER/Clover+2.0+Release+Notes

Documentation for Clover 4.0 422

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.

Clover Tutorials
Clover-for-Ant tutorial — This tutorial demonstrates how you can use Clover with JUnit to measure the code
coverage of a project. It takes you through the process of compiling a sample project and running the unit tests from
Ant, then modifying the build file to add Clover targets and properties.
Clover-for-Maven tutorials
How to configure your Clover license

Clover-for-Ant tutorial
This tutorial demonstrates how you can use Clover with JUnit to measure the code coverage of a project. It
takes you through the process of compiling a sample project and running the unit tests from Ant, then modifying
the build file to add Clover targets and properties.

 If you want to quickly see exemplary Clover report and not be bothered by manual configuration, please have
a look at:

Part 0 - Clover in 10 minutes

Tutorial Parts

Part 1 - Measuring Coverage
Part 2 - Historical Reporting
Part 3 - Automating Coverage Checks
Part 4 - Test Optimization

The Clover Tutorial describes different features of Clover in a step-by-step approach. Once you've completed
the Tutorial, have a look at and for examples of howUsing Clover Interactively Using Clover in Automated Builds
to pull the different aspects of Clover together for your project.

Before You Start

You will need to and , preferably the latest versions, then install them ondownload Clover-for-Ant Apache Ant
your system. The tutorial source files and JUnit are bundled with the Clover distribution in the /tutorial directory.

Instructions for installing Ant can be found in the .Apache Ant User Manual

Instructions for installing Clover can be found in the .Clover-for-Ant Installation Guide

The Clover tutorial assumes that you have basic knowledge of creating and modifying Ant build files. The Apach
 provides any additional support you may require in this area. It is also assumed that youe Ant User Manual

have a basic understanding of JUnit. A good introduction to JUnit can be found in the . ThisJUnit Cookbook
Clover tutorial is crafted around the example code described in the .Cookbook

The Tutorial Work Area

The tutorial source files are located within the 'tutorial' directory (that is,). In theCLOVER_HOME/tutorial
'tutorial' directory you will find the initial build file and the directory 'src' which contains the java files that you will
be testing. These sample files are shipped with JUnit test files, as described in the . TheyJUnit Cookbook
represent a simple library for dealing with money and provide methods to add, subtract, and collect money etc.
The file contains all the unit tests for the library and utilises the JUnit framework.MoneyTest.java

 The file is located directly under the 'tutorial' directory.build.xml

NEXT:

Once you have Ant installed and the Clover for Ant package have been downloaded, you are ready to progress
to in the tutorial.Part 1 - Measuring Coverage

Part 0 - Clover in 10 minutes

Requirement
This tutorial requires at least Clover 3.1.12 which contains pre-configured tutorial project (specifically Ant

 file).build_quick.xml

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

Documentation for Clover 4.0 423

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Welcome to the Clover-for-Ant 10 minutes tutorial. This document will show you how to quickly get Clover
reports for sample project.

On this page:

Introduction
Generating report

Running Ant command
Opening report

Uncovering details

Introduction

In this tutorial we will generate Clover HTML report for Money library provided in the directory.tutorial/src

Generating report

The process of generating report contains few phases, configured to be executed with single Ant command for
the purpose of this tutorial:

Compiling project (and instrumenting its source code with Clover statements).
Running unit tests (and gathering code coverage).
Generating code coverage report.

Running Ant command

To generate report, use the command ant -f build_quick.xml

Output should be similar to the following:

License
Make sure that file exists next to clover_installation_dir/lib/clover.license clover.jar
file and contains valid license.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 424

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

$ ant -f build_quick.xml
 Buildfile: build_quick.xml

 with.clover:
 [clover-setup] Clover Version 3.1.12, built on ...
 [clover-setup] Loaded from: C:\ant\lib\clover.jar
 [clover-setup] Site License registered to ...
 [clover-setup] Clover is enabled with initstring
'C:\clover\tutorial\.clover\clover2_X.db'

 code.compile:
 [mkdir] Created dir: C:\clover\tutorial\build
 [javac] Compiling 4 source files to C:\clover\tutorial\build
 [clover] Clover Version 3.1.12, built on ...
 [clover] Loaded from: C:\ant\lib\clover.jar
 [clover] Site License registered to ...
 [clover] Processing files at 1.4 source level.
 [clover] Clover all over. Instrumented 4 files.

 test.compile:
 [mkdir] Created dir: C:\clover\tutorial\build\test
 [javac] Compiling 2 source files to C:\clover\tutorial\build\test
 [clover] Clover Version 3.1.12, built on ...
 [clover] Loaded from: C:\ant\lib\clover.jar
 [clover] Site License registered to ...
 [clover] 23 test methods detected.

 test.run:
 [mkdir] Created dir: C:\clover\tutorial\build\testresult
 [junit] Running MoneyBugTest
 [junit] Tests run: 22, Failures: 0, Errors: 0, Time elapsed: 0.346 sec

 clover.report:
 [clover-html-report] Clover Version 3.1.12, built on ...
 [clover-html-report] Loaded from: C:\ant\lib\clover.jar
 [clover-html-report] Site License registered to ...
 [clover-html-report] Loading coverage database from: ...
 [clover-html-report] Writing report to 'C:\clover\tutorial\clover_html'
 [clover-html-report] Done. Processed 1 packages.

 BUILD SUCCESSFUL
 Total time: 9 seconds

This shows that the java source files have been compiled and instrumented, tests have been executed and
Clover report generated.

Opening report

You can now view the report by opening the file tutorial/clover_html/index.html in a web browser. See 'Current'
 for details about interpreting this coverage report.Report

Uncovering details

If you want to understand what happened under the hood and how to customize and adjust the process of
getting reports, please continue with Part 1 - Measuring Coverage

Part 1 - Measuring Coverage

Welcome to the Clover-for-Ant tutorial. This document will walk you through the process of integrating Clover
with an Ant build, gradually exploring Clover's more advanced code coverage features along the way.

On this page:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 425

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Introduction
Step 1. Compiling and running

Compiling
Running the tests

Step 2. Adding Clover targets
Adding Clover task definitions
Adding a target to enable Clover
Adding Clover to the build classpath
Adding <clover-clean> to the Clean Target

Step 3. Testing with Clover
Compile with Clover
Running the tests

Step 4. Creating a report
Adding a Clover report target
Generating the report

Step 5. Improving coverage
NEXT

Introduction

Part one of this tutorial focuses on the creation and interpretation of Clover 'current' reports. Current reports
display graphical and numerical data relating to the most recent coverage data collected for the project. This
tutorial covers the initial creation of coverage data before stepping you through how to generate and interpret
coverage reports. We'll then look at how to improve the coverage achieved by tests and regenerate the
coverage reports. This section covers the very basic features of Clover and is an important first step for all users.

In this tutorial we will compile and unit-test the Money library provided in the directory, then usetutorial/src
Clover to determine how well the unit tests actually test the library.

In the first step, we will compile the Money library and run tests against it.

Step 1. Compiling and running

In this step we will compile the library and run the tests against it without using Clover to check that everything is
working correctly before including Clover in the next step. In the directory you will find the initial buildtutorial
file which contains targets for compiling, running and cleaning the build.

Compiling

To compile the java files, use the command .ant code.compile

Output should be similar to the following:

$ ant code.compile
 Buildfile: build.xml

 code:
 [mkdir] Created dir: C:\clover\tutorial\build
 [javac] Compiling 4 source files to C:\clover\tutorial\build

 BUILD SUCCESSFUL
 Total time: 9 seconds

This shows that the java source files have been compiled and the class files have been placed in the C:\clove
 directory.r\tutorial\build

Running the tests

To run the JUnit tests, use the command .ant test.run

Output should be similar to the following:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 426

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

$ ant test.run
 Buildfile: build.xml

 test:
 [junit] Running MoneyTest
 [junit] Tests run: 22, Failures: 0, Errors: 0, Time elapsed: 0.052 sec

 BUILD SUCCESSFUL
 Total time: 1 second

This shows that all the tests have been run and have passed.

We have now compiled the Money library, and run tests against it. In the next step, we will add Clover targets
and properties to the build file to enable measurement of code coverage.

Step 2. Adding Clover targets

Now that we have compiled the code and run unit tests, we are ready to add Clover targets and properties to the
build file so we can measure the code coverage of the tests. Modifying the build file is trivial. Firstly we need to
add a target to enable and configure Clover for the build.

Adding Clover task definitions

Load the file into your favourite text editor and add the Clover Ant task and type definitions:build.xml

<property name="clover.jar" location="../lib/clover.jar"/>
<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

These lines define the Clover Ant tasks which can then be used within the build file.

Adding a target to enable Clover

Add a target called which will enable and configure Clover for a build:with.clover

<target name="with.clover">
 <clover-setup/>
</target>

Adding Clover to the build classpath

The needs to be in the runtime classpath when you execute the tests. To achieve this, add the lineclover.jar
in marked below to the Ant path:build.classpath

For this tutorial, ensure that the property has been defined as the path to your 'clover.jar'clover.jar
file. Hence, if you followed the instructions and have only added the CloverAdding to Ant's build.xml
'taskdef' resource to your 'build.xml' file, you'll need to redefine this resource to match the format
described in this step.

Note
This assumes that the is left in the unpacked Clover distribution from which this tutorial isclover.jar
being done. If you have installed the elsewhere, adjust the path accordingly.clover.jar

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 427

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<path id="build.classpath">
 <pathelement path="${clover.jar}"/> <!-- add this -->
 <pathelement path="${junit.jar}"/>
 <pathelement path="${app.build}"/>
</path>

Adding to the Clean Target<clover-clean>

It is advisable to add the task to the target. This will delete the Clover database<clover-clean/> clean
when the target is executed.clean

<target name="clean" >
 <delete dir="build"/>
 <clover-clean/> <!-- add this -->
</target>

Once you have made these changes, save the file. We will add some more Clover targets later tobuild.xml
perform coverage reporting, but first we will re-compile the Money library with Clover and re-run the tests to
obtain coverage data.

Step 3. Testing with Clover

We are now ready to measure the coverage of the tests over the Money library.

Compile with Clover

Ensure that your build has been cleaned by running . This deletes all class files from previousant clean
compilations.

Compile your code with Clover using the command .ant with.clover code.compile

You will get output similar to the following:

$ ant with.clover code.compile
 Buildfile: build.xml

 with.clover:
 [clover-setup] Clover Version ..., built on ...
 [clover-setup] Clover is enabled with initstring
'C:\clover\tutorial\.clover\clover2_X.db'

 code:
 [mkdir] Created dir: C:\clover\tutorial\build
 [javac] Compiling 4 source files to C:\clover\tutorial\build
 [clover] Clover Version ..., built on ...
 [clover] Loaded from: C:\ant\lib\clover.jar
 [clover] Site License registered to ...
 [clover] Processing files at 1.3 source level.
 [clover] Clover all over. Instrumented 4 files.

The result of this process is that your source files have been instrumented by Clover and then compiled as
usual. As part of the instrumentation process, Clover creates a database that will be used during the coverage
recording and report process.

Running the tests

We now need to run the tests again, using the command . This command will run the tests, thisant test.run
time measuring coverage. Output from Ant will be the same as a normal test run:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 428

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

$ ant test.run
 Buildfile: build.xml

 test:
 [mkdir] Created dir: C:\clover\tutorial\build\test
 [junit] Running MoneyTest
 [junit] Tests run: 22, Failures: 0, Errors: 0, Time elapsed: 0.346 sec

 BUILD SUCCESSFUL
 Total time: 1 second

During this test run, Clover measured the code coverage of the tests and wrote the coverage data to disk.

In the next step we'll generate a coverage report from this data to see how well the tests actually cover the
Money library.

Step 4. Creating a report

We are now ready to produce a coverage report. This section will focus on producing a Clover HTML report. For
information on how to generate a PDF report see the task, or for other types of Clover<clover-pdf-report>
reports see the task.<clover-report>

Adding a Clover report target

Open the file in a text editor and add the following to create a HTML report:build.xml target

<target name="clover.report">
 <clover-html-report outdir="clover_html" title="Clover Demo"/>
 </target>

The task is a simplified version of the task. As no <clover-html-report> <clover-report> historydir
attribute has been specified, it uses the current coverage data. Historical reports, which show the progress of
coverage over the life of the project, are discussed later in this tutorial (see). ThePart 2 - Historical Reporting
current report is to be in HTML format, written to the directory and with the title " ".clover_html Clover demo
The output directory is relative to the path of the Ant build file. In this case, the directory clover_html clover

 will be nested within as this is the location of ._html tutorial build.xml

Generating the report

Create a HTML report with the command . You will get output similar to the following:ant clover.report

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 429

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

$ ant clover.report

 with.clover:
 [clover-setup] Clover Version ..., built on ...
 [clover-setup] Loaded from: C:\ant\lib\clover.jar
 [clover-setup] Site License registered to ...
 [clover-setup] Clover is enabled with initstring
'C:\clover\tutorial\.clover\clover2_x.db'

 clover.report:
 [clover-html-report] Clover Version ..., built on ...
 [clover-html-report] Loaded from: C:\ant\lib\clover.jar
 [clover-html-report] Site License registered to ...
 [clover-html-report] processed 22 slices in 22ms (1ms per pair)
 [clover-html-report] Writing report to 'C:\clover\tutorial\clover_html'
 [clover-html-report] Done. Processed 1 packages.

 BUILD SUCCESSFUL
 Total time: 1 second

You can now view the report by opening the file tutorial/clover_html/index.html in a web browser. See 'Current'
 for details about interpreting this coverage report.Report

In the next step, we will enhance the JUnit tests to improve code coverage of the Money library.

Step 5. Improving coverage

After having a look at the coverage report, you'll notice that coverage is not 100%. Although not always possible,
it is best to get as close to full coverage as you can. Think of it this way: every line that isn't covered could
contain a bug that will otherwise make it into production. You should certainly aim to cover all of the code
that will be executed under normal operation of the software.

One method in the Money library that is not fully covered is the method in the Money class (linesequals()
40-42 as seen below). The first few lines of this method handle the special case when the Money value is zero.
The coverage report shows that the code to handle this has not been covered by the tests. Line 40 has been
executed 27 times, but since it has never evaluated to it has not been fully covered and is therefore in red.true
It follows then that the two successive lines have never been executed.

We can now improve the tests so that this section of code is covered. To do this, make the following additions
(shown in) to the file.bold MoneyBagTest.java
Declare the variable :f0USD

public class MoneyBagTest extends TestCase {
 private Money f12CHF;
 private Money f14CHF;
 private Money f7USD;
 private Money f21USD;
 private Money f0USD;
 ...

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 430

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Initialise in the method:f0USD setUp()

protected void setUp() {
 f12CHF = new Money(12, "CHF");
 f14CHF = new Money(14, "CHF");
 f7USD = new Money(7, "USD");
 f21USD = new Money(21, "USD");
 f0USD = new Money(0, "USD");
 ...

Finally, the following test needs to be added:

public void testMoneyEqualsZero() {
 assertTrue(!f0USD.equals(null));
 IMoney equalMoney = new Money(0, "CHF");
 assertTrue(f0USD.equals(equalMoney));
}

After these amendments have been made, compile and run tests again (by running), thenant test.run
re-generate the HTML report (by running). You will see that the Money class now hasant clover.report
100% coverage.

NEXT

Part 2 - Historical Reporting

Part 2 - Historical Reporting

Part two of this tutorial focuses on the creation and interpretation of Clover 'Historical' reports.

On this page:

Step 1 - Creating history points
Adding a history point target
Recording a history point

Step 2 - Generating historical data
Step 3 - Creating historical reports

Add a historical report target
Generating a historical report

Step 4 - Customising historical reports
Changing output format
Chart Selection
Chart Configuration
'Movers' Configuration

NEXT

Historical reports display graphical and numerical data relating to sets of coverage data collected over time for
the project. This tutorial covers the generation of a set of historical data, interpretation of the information
displayed in the Historical reports and customisation of the reports for your particular reporting preferences.

In the first step, we will edit the Ant build file to generate a .history point

A history point is a snapshot of code coverage and metrics data for the project at a particular point in time. By
running tests with Clover over time and creating a series of history points, it is possible to compare code
coverage and metrics by viewing results in a single Clover report and enabling you to track the development of
your project.

Step 1 - Creating history points

Step 1 describes how to set up the relevant Ant target and run the command so that a history point can be
created. The generation of historical reports is discussed in later steps.

Adding a history point target

Add the following target to your file:build.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 431

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<target name="record.point">
 <clover-historypoint historyDir="clover_history"/>
</target>

When this target is run, a history point will be created with the timestamp value of the coverage run.

The value of the parameter is the directory where the history points will be stored. You shouldhistoryDir
create this directory before executing this target.

Recording a history point

Ensure that the source code has been instrumented, and the tests run, by using the commands ant clean
 and respectively.with.clover code.compile ant test.run

Run the command . Output should be similar to the following:ant record.point

$ ant record.point
 Buildfile: build.xml

 record.point:
 [clover-historypoint] Clover Version ..., built on ...

 [clover-historypoint] Merged results from 2 coverage recordings.
 [clover-historypoint] Writing report to
 'C:\clover\tutorial\clover_history\clover-20030307111326.xml.gz'
 [clover-historypoint] Done.

 BUILD SUCCESSFUL
 Total time: 2 seconds

In the next step we will add more tests to improve coverage of the Money Library, recording Clover history points
along the way.

Step 2 - Generating historical data

In we made additions to the testing suite to improve code coverage. In order to show thePart 1 of the tutorial
historical reporter in use, we will now continue to add tests and periodically record history points which will later
be used as code coverage and metrics data by the historical reporter.

The file is at 100% coverage, but there are several sections of code that remain untested in the Money.java Mo
 file. This step will focus on bringing the coverage of this class to 100%, as well as creatingneyBag.java

historical data in the form of history points.

Open the source file in your favourite text editor and make the following additions shownMoneyBagTest.java
in bold:

Declare the variables and :f0CHF fMB3

By default, Clover records the history point with a timestamp of the coverage run. If you wish to override
the timestamp value of a history point, you can add and attributes to the taskdate dateformat
allowing you to reconstruct coverage history. See documentation for the < > task forclover-historypoint
details.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 432

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

public class MoneyBagTest extends TestCase {
 private Money f12CHF;
 private Money f14CHF;
 private Money f7USD;
 private Money f21USD;
 private Money f0USD;
 private Money f0CHF;

 private IMoney fMB1;
 private IMoney fMB2;
 private IMoney fMB3;
 ...

Initialise and in the method:f0CHF fMB3 setUp()

protected void setUp() {
 f12CHF = new Money(12, "CHF");
 f14CHF = new Money(14, "CHF");
 f7USD = new Money(7, "USD");
 f21USD = new Money(21, "USD");
 f0USD = new Money(0, "USD");
 f0CHF = new Money(0, "CHF");

 fMB1 = MoneyBag.create(f12CHF, f7USD);
 fMB2 = MoneyBag.create(f14CHF, f21USD);
 fMB3 = MoneyBag.create(f0CHF, f0USD);
 ...

Add the following test:

public void testMoneyBagEqualsZero() {
 assertTrue(!fMB3.equals(null));
 IMoney expected = MoneyBag.create(new Money(0, "CHF"), new Money(0, "USD"));
 assertTrue(fMB3.equals(expected));
}

After making the above changes, reinstrument and test your code by running ant clean with.clover
 and respectively. Then record a new history point by running code.compile ant test.run ant
. By recording a history point now, Clover will capture the new state of code coverage andrecord.point

metrics for comparison with past or future runs.

Add the following tests to bring the coverage of the Money project to 100%:

public void testToString() {
 String expected="{[12 CHF][7 USD]}";
 assertEquals(expected, fMB1.toString());
}
public void testVectorSize() {
 IMoney other = MoneyBag.create(new Money(2, "CHF"), new Money(2, "USD"));
 assertTrue(!other.equals(fMB3));
}

Once again, re-instrument your code, test and record a new history point.

We have now created a series of history points for the Money library. The next section discusses how to
generate a Clover historical report which will display the historical data that has been collected.

Step 3 - Creating historical reports

Now that we have recorded several history points, the next step is to add a target to the build file which will call
the historical reporter and generate a historical report.

Add a historical report target

Add the following target to :build.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 433

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<target name="hist.report">
 <clover-report>
 <historical outfile="historical.pdf"
 historyDir="clover_history">
 <format type="pdf"/>
 </historical>
 </clover-report>
</target>

The target is similar to the target defined in Part 1. The main differences are thathist.report report.html
the nested element specifies rather than and there is no specification of the output<historical> <current>
format as .html

The historical reporter needs to be able to find the coverage history files in order to create the report; so the his
 value must be the same as the defined for the history points. The format of the reporttoryDir historyDir

can be either PDF or HTML, as specified by the element . The eleme<format> < >clover-report <format>
nt is optional and is not included in the example above. When the element is omitted, a PDF report is<format>
produced by default. Depending on the chosen format, the value may represent a single file as in theoutfile
case of the PDF format, or the name of a directory (in the case of the HTML format).

Generating a historical report

Create a historical report by using the command . Output should be similar to the following:ant hist.report

$ ant hist.report
 Buildfile: build.xml

 hist.report:
 [clover-report] Clover Version ..., built on ...
 [clover-report] Writing report to 'C:\clover\tutorial\historical.pdf'
 [clover-report] Merged results from 2 coverage recordings.
 [clover-report] Done. Processed 1 packages.
 [clover-report] Writing historical report to 'C:\clover\tutorial\historical.pdf'
 [clover-report] Read 3 history points.
 [clover-report] Done.

 BUILD SUCCESSFUL
 Total time: 8 seconds

The report can now be viewed by opening the file in a PDF viewer such as tutorial/historical.pdf Adob
.e Acrobat Reader

Step 4 - Customising historical reports

In the previous sections of this tutorial we have looked at how to create and interpret a basic historical report. In
addition to basic reporting, the historical reporter is highly configurable and this section will detail some of the
options you can use. For a full list of the report configuration options, see the documentation for the <clover-r

 task.>eport

Changing output format

The default historical report type is PDF, although an HTML report can also be produced. To create an HTML
report, add a nested element with type specified as to your element. Try<format> html < >clover-report
adding the following target to your file and executing the command :build.xml ant hist.report.html

To interpret this history report, see Understanding a Historical Report

http://creativecommons.org/licenses/by/2.5/au/
http://www.adobe.com/
http://www.adobe.com/

Documentation for Clover 4.0 434

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<target name="hist.report.html">
 <clover-report>
 <historical outfile="clover_html/historical"
 title="My Project"
 historyDir="clover_history">
 <format type="html"/>
 </historical>
 </clover-report>
</target>

A custom title can also be displayed for your report by using the attribute in the elementtitle <historical>
as above.

Chart Selection

The historical reporter allows you to specify which charts to include in your report, and also allows you to
configure further options in the charts themselves.

The default reporting mode is to include all four report elements: , , and <overview> <coverage> <metrics>
. But to include some and not the others is a simple matter of nesting the desired elements within the <movers>

 element. Try adding the following target to your file as an example:<historical> build.xml

<target name="hist.report.coverage">
 <clover-report>
 <historical outfile="histCoverage.pdf"
 title="My Project"
 historyDir="clover_history">
 <overview/>
 <coverage/>
 <format type="pdf"/>
 </historical>
 </clover-report>
</target>

The above code will produce a historical PDF report with the title ' ' which includes only twoMy Project
sections: the 'Overview' and the 'Coverage over time' charts.

Chart Configuration

Clover presents flexible charting configuration, allowing you to present information exactly as you like it. The <ch
 element allows you to define a custom chart and fill it with specific data with the element.art> <columns>

<target name="hist.report.select">
 <clover-report>
 <historical outfile="histSelect.pdf"
 title="My Project"
 historyDir="clover_history">
 <chart/>
 <metrics/>
 <format type="pdf"/>
 </historical>
 </clover-report>
</target>

This will produce a PDF file with the filename ' ' with two sections: the a custom chart with totalhistSelect.pdf
coverage information; and the 'Metrics over time' chart. You can also specify whether or not a chart uses a log
scale by adding the attribute:logscale

<metrics logscale="false"/>

'Movers' Configuration

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 435

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

The 'Movers' section of the historical report shows you the classes whose coverage has changed the most
recently. This is useful for spotting classes that have had sudden changes in coverage, perhaps the unintended
result of changes to the unit test suite.

The 'Movers' chart allows you to specify the threshold of point change a class must satisfy, the maximum
number of gainers and losers to display and the period across which the gains and losses are calculated. Add
the following target to your file as an example of this feature in use:build.xml

<target name="hist.report.movers">
 <clover-report>
 <historical outfile="histMovers.pdf"
 title="My Project"
 historyDir="clover_history">
 <movers threshold="5%" range="20" interval="2w"/>
 <format type="pdf"/>
 </historical>
 </clover-report>
</target>

In this case, the configuration values selected state that classes must have a change in coverage of at least 5
percentage points to be included in the chart, a maximum of 20 gainers and 20 losers can be displayed, and the
initial valuation point for class coverage is 2 weeks prior to the most recent history point. Should there be greater
than 20 gainers in this period, then the classes with the biggest percentage point gain will be displayed, and the
same for the losers.

See for details on the syntax for specifying interval values.Interval Format

The next section of this tutorial will discuss how you can automate the coverage checking of your project.

NEXT

Part 3 - Automating Coverage Checks

Part 3 - Automating Coverage Checks

This section of the tutorial looks at some advanced features of Clover.

The task provides a useful mechanism for automating your coverage checking and gives you< >clover-check
the option of failing your build if the specified coverage percentage is not met. It is easily integrated into your
build system.

On this page:

Adding coverage checking
Failing the build if coverage criteria not met
Adding Package-level coverage criteria
Context filtering
NEXT

Adding coverage checking

Ensure that you have current Clover coverage data so that you can check the coverage percentage for your
project. Clover coverage data is generated as described in of the Tutorial.Part 1

Add the task to your build by specifying a target similar to the following:< >clover-check

<target name="clover.check" depends="with.clover">
 <clover-check target="80%"/>
</target>

This configuration sets an overall project target of 80% coverage.

Use the command to run the check. If your test coverage satisfies the target coverageant clover.check
percentage, output will be similar to the following:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 436

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

$ ant clover.check
 Buildfile: build.xml

 with.clover:

 clover.check:
 [clover-check] Merged results from 1 coverage recording.
 [clover-check] Coverage check PASSED.

 BUILD SUCCESSFUL
 Total time: 2 seconds

If your coverage percentage does not reach the coverage target, you'll get something like this instead:

$ ant clover.check
 Buildfile: build.xml

 with.clover:

 clover.check:
 [clover-check] Merged results from 1 coverage recording.
 [clover-check] Coverage check FAILED
 [clover-check] The following coverage targets were not met:
 [clover-check] Overall coverage of 74% did not meet target of 80%

 BUILD SUCCESSFUL
 Total time: 2 seconds

In order to try this out on the Money Library used in this tutorial, try commenting out some of the tests in the Mon
 file to create a situation where the code coverage does not reach 80%.eyTest.java

Failing the build if coverage criteria not met

In the above situation where the target is not met, after the message has been written to output, the build for the
specified target will continue as normal.

Adding the attribute allows you to specify whether or not you want the build to failhaltOnFailure
automatically if the coverage target is not met. The default for is .haltOnFailure false

<target name="clover.check.haltonfail" depends="with.clover">
 <clover-check target="80%" haltOnFailure="true"/>
 </target>

The attribute of the task allows you to set a specified property if thefailureProperty < >clover-check
target of the project is not met:

<target name="clover.check.setproperty" depends="with.clover">
 <clover-check target="80%" failureProperty="coverageFailed"/>
 </target>

In this case, if the coverage does not reach 80%, the property will have its value set to thecoverageFailed
coverage summary message "Overall coverage of *% did not meet target of 80%". This allows you to check the
value of this property in other Ant targets and manage the outcome accordingly. For an example on managing
the resulting actions for a project which does not meet its coverage target, see Using Clover in Automated Builds
.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 437

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Adding Package-level coverage criteria

The task also allows you to specify the desired percentage covered for different packages,< >clover-check
which is useful if you have certain packages that have more or less stringent coverage requirements than the
rest of the project. This is done by adding nested ' ' elements like the following:package

<target name="clover.check.packages" depends="with.clover">
 <clover-check target="80%">
 <package name="com.clover.example.one" target="70%"/>
 <package name="com.clover.example.two" target="40%"/>
 </clover-check>
</target>

Context filtering

The task allows you to prescribe a filter that excludes coverage of certain block-types from< >clover-check
overall coverage calculations. See for more information. The attribute accepts aCoverage Contexts filter
comma separated list of the contexts to exclude from coverage calculations.

<target name="clover.check.nocatch" depends "with.clover">
 <clover-check target="80%" filter="catch"/>
</target>

This will run the Clover coverage percentage check as normal, but will calculate coverage with omission of all 'c
' blocks.atch

NEXT

Part 4 - Test Optimization Tutorial

Part 4 - Test Optimization Tutorial

This section of the tutorial walks through the process of setting up Clover , which efficientlyTest Optimization
runs only the tests for code which has changed since the last build.

On this page:

Adding Test Optimization Tasks to build.xml
1. Adding Paths to Resources
2. Choosing a Location for the Snapshot File
3. Adding a new Ant Target to Generate the Optimized Test 'Snapshot'
4. Editing the JUnit Task to Add the 'clover-optimized-testset' Element

Demonstrating that Test Optimization is Working
5. Running the Test Optimized Build
6. Running an 'Empty' Optimized Build
7. Editing a Java File in the Project
8. Rebuilding the Project with Test Optimization

Related Links

This tutorial assumes you have completed the other steps and have fully set up Ant in thoseClover Tutorial
steps to build and test the MoneyBag Java project, with Clover testing the JUnit code coverage. We will make
use of the Ant tasks set up in from the previous tutorial chapters, here. Knowing that, read on.build.xml

The process described here will change your build file to always run in Test Optimization mode.

Adding Test Optimization Tasks to build.xml

1. Adding Paths to Resources

Open your file.build.xml
 You should already have this line included:

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp

Documentation for Clover 4.0 438

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

from the earlier Clover-for-Ant tutorial steps.

Edit around this line to add in one additional line of code, as shown below:

<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>
<clover-env/>

2. Choosing a Location for the Snapshot File

Test Optimization uses the concept of a ' ' file. This is a file that records information about the previoussnapshot
build, as a point of comparison. This is what allows Clover to run Optimized tests, by comparing the data in the
snapshot file with the current build that you are intending to launch.

For the purposes of this tutorial, leave the snapshot file in its default location, (next to the clover database clove
) here:r.db

<PROJECT_DIR>/.clover/coverage.db.snapshot

3. Adding a new Ant Target to Generate the Optimized Test 'Snapshot'

Now' we'll and a new Ant target to generate the test :snapshot

<target name="clover.snapshot" depends="with.clover">
 <clover-snapshot file="${clover.snapshot.file}"/>
</target>

4. Editing the JUnit Task to Add the 'clover-optimized-testset' Element

In your file, edit the target ,specifically the portion and its sub-element, build.xml test.run junit batchte
.st

Having just completed the earlier steps in the Clover-for-Ant tutorial, your code inside will look likebatchtest
so:

<junit fork="yes" printsummary="true">
 <classpath refid="testbuild.classpath"/>
 <formatter type="xml"/>
 <batchtest fork="yes" todir="${test.result}">
 <fileset dir="${test.src}" includes="**/*Test.java"/>
 </batchtest>
</junit>

To add Test Optimization to the build: add a new element, , move the clover-optimized-testset fileset
element inside the new element.clover-optimized-testset

Edit your new code block until it is the same as the following:batchtest

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 439

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<junit fork="yes" printsummary="true">
 <classpath refid="testbuild.classpath"/>
 <formatter type="xml"/>
 <batchtest fork="yes" todir="${test.result}">
 <clover-optimized-testset fullrunevery="10"
 enabled="true"
 ordering="failfast"
 minimize="true"
 snapshotfile="${clover.snapshot.file}">
 <fileset dir="${test.src}" includes="**/*Test.java"/>
 </clover-optimized-testset>
 </batchtest>
</junit>

Your Test Optimization configuration is now complete.

Demonstrating that Test Optimization is Working

Finally, we will build our project, creating the essential Clover 'snapshot' file. Next, we will edit one of the Java
files in the 'Money' project, commenting out one of the unit tests. When we run the Test Optimized build a
second time, Clover will compare the snapshot file against the new coverage database and then run targeted
tests which incorporate only those files which have changed, (which in this case will be only one, the Java file
that we edited). This saves valuable time, which is the key advantage of Test Optimization.

5. Running the Test Optimized Build

Run your build with the following command:

ant with.clover clean test.run clover.snapshot

Adding the target here will create the additional snapshot database, which is used as aclover.snapshot
point of comparison for the Test Optimization.

 This is essential for enabling Test Optimization of future builds.

Clover will output this text to the console, showing that it has created the all-important snapshot file:

test.run:
 [mkdir] Created dir: /tutorial/build/testresult
 [junit] Running com.cenqua.samples.money.MoneyBagTest
 [junit] Tests run: 26, Failures: 0, Errors: 0, Time elapsed: 0.141 sec
 [junit] Running com.cenqua.samples.money.MoneyTest
 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 3.079 sec

...

clover.snapshot:
[clover-snapshot] Clover Version ..., built on ...
[clover-snapshot] Loaded from: /tutorial/lib/clover.jar
[clover-snapshot] Clover: Commercial License registered to Atlassian.
[clover-snapshot] Snapshot file not found, creating new file at
/tutorial/.clover/clover.db.snapshot

6. Running an 'Empty' Optimized Build

If we re-run the same Ant build, Clover will detect that none of the source files have changed. Because we are
running a Test Optimized build, Clover won't build or test anything, the result is zero tests.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 440

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

With a Test-Optimized build, Clover will output the following if no files have changed since the last build:

test.run:
 [junit] Clover estimates saving around 3 seconds on this optimized test run.
 [junit] Clover is including 0 test classes in this run (total test classes: 2)

This is desired behaviour, especially in a continuous integration environment where builds are automated and
run regularly.

7. Editing a Java File in the Project

To show how Test Optimization works, we'll change one of the files in the project. When we run the Test
Optimized build, Clover will detect that this file has changed and build it exclusively (rather than rebuilding
everything).

Edit the file from the tutorial project. For the purposes of this demonstration, add a MoneyBag.java System.o
 in the method on line #27:ut.println() add

public IMoney add(IMoney m) {
 System.out.println("Adding: " + m);
 return m.addMoneyBag(this);
}

Now save the file.

8. Rebuilding the Project with Test Optimization

Now having changed a file in the project, we will run the same Ant tasks again.

ant with.clover test.run clover.snapshot

Clover will detect that the source file has changed, rebuilding and only running the tests for that file specifically.
We can see this illustrated in the console output:

test.run:
 [junit] Clover estimates saving around 3 seconds on this optimized test run.
 [junit] Clover is including 1 test class in this run (total test classes: 2)
 [junit] Running com.cenqua.samples.money.MoneyBagTest
 [junit] Tests run: 26, Failures: 0, Errors: 0, Time elapsed: 0.146 sec

This Clover output shows that only one of two test classes was included. Note that all the test methods in this
one test class were run, since Clover currently optimizes to the class level only. Clover also estimates the time
saved in this particular build and test run. In this case the saving is only seconds, but in more complex projects it
could well be multiple minutes or hours.

That concludes the Clover-for-Ant Test Optimization tutorial. For more information on integrating Test
Optimization, see the related links below.

Related Links

Overview of Test Optimization

Test Optimization Quick Start Guide

Test Optimization Technical Details

Test Optimization Quick Start for Maven 2

Clover for Maven 2 - Test Optimization Best Practices

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/features/optimization.jsp
http://confluence.atlassian.com/display/CLOVER/Test+Optimization+Quick+Start+Guide

Documentation for Clover 4.0 441

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

3.

1.

2.
a.

b.

Clover-for-Maven tutorials

Code examples

Checkout the Mercurial repository. https://bitbucket.org/atlassian/maven-clover2-plugin

In the directory you'll find a number code examples showing integrations with various frameworks,src/it
inclusion filters, compilation of Java 8 and Groovy code etc.

How to configure your Clover license

Configuring your Clover license

This page contains instructions for configuring the licence file in all versions of Clover.

Installing a licence for Clover-for-Ant

You need a valid Clover license file to run Clover. You can obtain a free 30 day evaluation license or
purchase a commercial license at .http://www.atlassian.com
To configure your clover.license file, do one of the following:

Place your clover.license file in CLOVER_HOME/lib; or
Place the license file on the Java Classpath that will be used to run Clover; or
Place the license file on the file system somewhere, and then set the Java System Property
clover.license.path to the absolute path of the license file.

If you are not finished, carry on with the . Enjoy using Clover.Clover-for-Ant installation

Installing a licence for the Clover-for-Maven 2 plugin

The plug-in does not include a built-in evaluation license - you will need to download a license from Atlass
.ian

Configure your license. You can either:
add it in your file (so that it will become available for all projects running on a.m2/settings.xml
given machine):

<profiles>
 <profile>
 <id>my-clover-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <!-- You can define the path to a license file: -->

 <maven.clover.licenseLocation>/path/to/clover.license</maven.clover.lic
enseLocation>

 <!-- Or you can embed license key (remember to keep newline
characters): -->
 <maven.clover.license><![CDATA[
 ...
]]></maven.clover.license>
 </properties>
 </profile>
</profiles>

or add it in your file:pom.xml

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin
http://www.atlassian.com
http://www.atlassian.com
http://www.atlassian.com

Documentation for Clover 4.0 442

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

2.

b.

3.

1.

2.
3.
4.

5.

6.
7.

1.

2.

3.

<build>
 <plugins>
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <!-- Define a path to a license file: -->
 <licenseLocation>/path/to/clover.license</licenseLocation>

 <!-- Or embed a license key (remember to keep newline
characters): -->
 <license><![CDATA[
 ...
]]></license>
 </plugin>
 </plugins>
</build>

If you are not finished, carry on with the . Enjoy using Clover.Clover-for-Maven configuration

Installing a licence for the Clover-for-Eclipse plug-in

You need a valid Clover license file to run Clover. You can obtain a free 30 day evaluation license or
purchase a commercial license at .http://www.atlassian.com
Open your valid trial, purchased or Open Source license file for Clover.
Within Eclipse, select from the menu "Window | Preferences" and click on Clover > License.
Paste the contents of your license file into the license text area or select your license file by clicking
"Load...".
Click Apply. The license summary should now display status, type and message consistent with the type
of license you entered.
Click OK to close the window.
If you are not finished, carry on with the . Enjoy using Clover.Clover-for-Eclipse Installation

Installing a license for the Clover-for-IDEA plug-in

Download Clover license file from . Evaluation licenses are available free ofhttp://my.atlassian.com/
charge.
Open the Clover license dialog in IDEA. Go to ' '. Click 'File > Settings > IDE Settings > Clover License

' and select the 'clover.license' file you just downloaded. Close the window.Load
You're ready to use Clover-for-IDEA. See to learn Clover's features.Clover-for-IDEA User's Guide

Hacking Clover
These pages show how it is possible to "hack" Clover and use it in a non-standard way, beyond the scope it was
designed for.

Clover-for-Android
Clover-for-Scala
Converting XML to database format
Measuring per-test coverage for manual tests
Updating optimization snapshot file
Using Clover for other programming languages

Instrumenting JSP files
Using Clover for PHP

Clover-for-Android

The Clover for Android is in alpha stage and therefore it by Atlassian. Theis not officially supported

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com
http://my.atlassian.com/

Documentation for Clover 4.0 443

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

We're proud to inform that Android support was initially created during one of our Atlassian days.ShipIt

Installation

A prototype has been tested using following software versions, but it should work on other versions as well.

Download and install Eclipse for Java Developers from (recommendedhttp://www.eclipse.org/downloads
4.2; use at least 3.6.2)
Download and install Android SDK from (version 20.0.3; usehttp://developer.android.com/sdk/index.html
at least version 8)
Download Clover-for-Android from http://www.atlassian.com/software/clover/downloads/binary/com.cen
qua.clover.android_3.1.7.v20120920000000.zip
Run Eclipse and install (Help > Install New Software > Add ...)

Google ADT from update site (version 20.0.3) don'thttps://dl-ssl.google.com/android/eclipse/ ;
select NDK Plugins to avoid download of Eclipse CDT
Clover-for-Android from downloaded zip file

following page was created for all who'd love to use our tool on the Android platform.Clover-lovers

Please raise Android-related issues on - instead of this add comments to thisdo not Atlassian Support
page or raise questions on - we will review them and try to help in spare time.Atlassian Answers

Feel free to download and use the experimental Clover-for-Android version. Feel free to contribute by
extending this manual.

New to Clover?
If you haven't used Clover before, we strongly recommend spending few minutes to learn its basic
features:

Clover for Eclipse in 10 minutes

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/company/about/shipit
http://www.eclipse.org/downloads
http://developer.android.com/sdk/index.html
http://www.atlassian.com/software/clover/downloads/binary/com.cenqua.clover.android_3.1.7.v20120920000000.zip
http://www.atlassian.com/software/clover/downloads/binary/com.cenqua.clover.android_3.1.7.v20120920000000.zip
https://dl-ssl.google.com/android/eclipse/
http://support.atlassian.com
http://answers.atlassian.com

Documentation for Clover 4.0 444

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Note: Clover-for-Android is based on the Clover-for-Eclipse 3.1.7.

Note: Clover-for-Android is using 'adb' application to fetch coverage data from a device. It expects to find it in:

<sdk>/platform-tools/adb.exe (on Windows)
<sdk>\platform-tools\adb (on other operating systems)

Please note that location of 'adb' has changed from to since SDK v 8, so<sdk>/tools <sdk>/platform-tools
please don't use older SDK versions. Value of is being fetched from 'com.android.ide.eclipse.adt.sdk'<sdk>
property in Eclipse Preferences ()."Window > Preferences > Android > Android SDK"

Note: Clover-for-Android has been tested on a following configuration:

Windows7 (64-bit) + Eclipse 4.2 for Java + JDK7 + ADT 20.0.3

Clover-for-Android vs Clover-for-Eclipse

Clover for Android has following differences, compared to base Clover for Eclipse:

The "initstring" can be expressed as URI
The "Refresh Coverage Data" button fetches coverage data from Android device
The "Delete Coverage Data" button deletes coverage data from Android device
The CLOVER_RUNTIME library (plugins/com.cenqua.clover.runtime*.jar) size has been drastically

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 445

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

reduced in order to make it deployable on android devices
There is no need to copy clover.db and clover.jar for application execution

A following features were not tested on Clover for Android:

Distributed Coverage feature (i.e. sending coverage data via network socket from android device)
Test Optimization

A following features do not work currently:

Test Coverage Contribution view does not work when tests are kept in a separate project
Test optimization does not work if tests are kept in a separate project (this does not work in
Clover-for-Eclipse too, because Clover does not support cross-project test optimization)

Usage

Building Android application with Clover

1) Run Eclipse and open your Android project.

2) Right click on the project, select from context menu. "Clover > Enable on this project"

3) Right click on the project, select "Properties > Clover". Toggle on "Enable Clover in this project". Next select
"Custom value" radio button and enter a path to Clover database in a following format:

clover+ <path to database file on desktop>?localCoverageDir=<path to coverageremote:file:///
directory on device>

Click OK. All Clover views shall be added to current perspective. You can also open them from "Window > Show
.view > Other ... > Clover"

Possible InitString formats:

plain path (absolute or relative) - for Java
URI: clover+ <path to database file on desktop>?localCoverageDir=<path toremote:file:///

 - for Androidcoverage directory on device>
URI: - for Javaclover+ <path to database file on desktop>local:file:///

Keep in mind that for URIs:

on Windows platform you must encode ":" and "\" characters to make the initstring URI-compliant
: = %3A
\ = %5C

your must have with three slashes (because in URI format after two slashes we have a hostfile:///
name, which is not our case)

Examples:

clover+remote:file:/// android.db?localCoverageDir=/data/data/com.example.ac%3A%5CTemp%5C
ndroid.notepad/clover
with "Relative to project dir" disabled
remote coverage, database c:\Temp\android.db on Windows, coverage files in
/data/data/com.example.android.notepad/clover on Android device,

clover+remote:file:///home/alice/workspace/android.db?localCoverageDir=/data/data/com.example
.android.notepad/clover
with "Relative to project dir" disabled
remote coverage, database /home/alice/android.db on Unix/MacOS, coverage files in
/data/data/com.example.android.notepad/clover on Android device,

clover+local:file:///c%3A%5CTemp%5Cclover.db

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 446

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

with "Relative to project dir" disabled
local coverage, database c:\Temp\clover.db on Windows

clover/clover.db
with "Relative to project dir" enabled
local coverage, database <project_directory>/clover/clover.db

c:\Temp\clover.db
with "Relative to project dir" disabled
local coverage, database c:\Temp\clover.db on Windows

4) Change the flush policy to or and define interval (1000"At set intervals from a Clover thread" "At set intervals"
ms for example).

Note that when you close application on Android device, JVM is still running, thus the opti"At JVM shutdown ..."
on is not preferred.

 You can also trigger Clover flush programaticaly - just put inline comment in your code"///CLOVER:FLUSH"
(for example in Activity.onDestroy() method).

5) Open . You will find a CLOVER_RUNTIME library"Project Properties > Java Build Path > Order and Export"
on a list. Enable the checkbox so that Clover library will be exported. Perform a full rebuild of the project. You
should see "red coverage" in source files and in Coverage Explorer.

Running instrumented application on a device or emulator

1) Select from main menu or Package Explorer context menu. You can"Run as ... > Android application"
execute your application or unit tests on a real device or simulator. Choose device you wish to use.

 There is no need to copy the to a device (yay!). Clover-for-Android is using a special coverage clover.db
recorder version, which does not require presence of this database.

 There is also no need to copy to a device (yay!). Google Android Toolkit will automatically package clover.jar
CLOVER_RUNTIME jar file into Dalvik image during packaging.

Running unit tests on a device or emulator

Option #1

Unit tests for Android are kept in a separate Eclipse project.

For such scenario we have found a following configuration which works:

add application project to Java Build Path in the test project ("Project Properties > Java Build Path >
)Projects > Add ..."

enable Clover in the test project ()"Project Properties > Clover > Enable on this project toggle"
configure InitString ()"Project Properties > Clover > Instrumentation tab > Initstring box"

use URI as for application project"clover+remote:"
use value as for application project (for example?localCoverageDir= the same
"/data/data/com.my.app")

we've found some problems with permissions when trying to write to default data directory
for test application (for example "/data/data/com.my.app.tests")

use database name than used for application project (e.g. "/tmp/clover-tests.db")different
you cannot use the same database name in two Eclipse projects

configure flush policy ()"Project Properties > Clover > Instrumentation tab > Flush Policy box"
choose "At JVM shutdown and on special instruction"

add the inline comment in tearDown() method for all JUnit test cases (or at least in"///CLOVER:FLUSH"
the last test case executed) - see example below

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 447

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

perform full rebuild of both projects

Right click on the test project and select . After tests are finished, select both"Run as ... > Android JUnit Test"
projects in view and click button for each of them."Coverage Explorer" "Refresh Coverage Data"

You shall see coverage results for both projects.

Option #2

Unit tests are kept together with application code in one Eclipse project.

Configuration not tested yet.

Retrieving coverage data from a device

Just click on the "Refresh Coverage Data" button

 Clover is using "adb" command to retrieve coverage files from the device. Make sure that you're default
running one device only, otherwise you might fetch coverage snapshots from wrong device.

Viewing coverage results

As soon coverage data is fetched from device you can browse them using or Coverage Explorer Test Run
 view. It is also possible to generate HTML/XML/PDF reports, as usual.Explorer

Cleaning coverage data

When you click on the "Delete Coverage Recordings", Clover will remove files from desktop as well as from
android device.

 Clover is deleting coverage files from a location defined in initstring. In case when initstring has changed, you
have to remove files manually - open the view from perspective and navigate to a"File Explorer" "DDMS"
directory where coverage data was stored (usually it will be)./data/data/com.my.application.name/clover

 Clover is using "adb" command to delete coverage files from the device. Make sure that you're default
running one device only, otherwise you might delete coverage snapshots from wrong device.

Example 1 - manual testing

Open and click . Choose "File > New ... > Project ... > Android > Android Sample Project" "Next" "Android 2.3.3"
build target and click . Choose sample, name it and click Finish."Next" "Notepad" "NotePad"

Right click on the project, select from context menu. All Clover views shall be"Clover > Enable on this project"
added to current perspective. You can also open them from ."Window > Show view > Other ... > Clover"

Open . You will find a CLOVER_RUNTIME on a list."Project Properties > Java Build Path > Order and Export"
Tick the checkbox so that library will be exported.

Open . Set ""Project Properties > Clover" clover+remote:file:/// ?localCoverageDirandroid.dbc%3A%5CTemp%5C
" initstring. Disable "Relative to project dir" checkbox. Set flush=/data/data/com.example.android.notepad/clover

policy to with 1000 ms interval. Click OK."At set intervals from a Clover thread"

Perform full rebuild. You should see red coverage in and text editors as on picture below.Coverage Explorer

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 448

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Now let's run the application on Android device. Right click on the project, select "Run as > Android application".
Wait few minutes until emulator starts and installs our app.

Add new notes, delete it, change title etc. Exit application.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 449

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Click button in view. After few seconds you shall see coverage"Refresh Coverage Data" Coverage Explorer
data like on picture below:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 450

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

You can browse coverage in IDE as well as generate XML/PDF/HTML reports, for example:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 451

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Example 2 - unit testing

Prerequisite: "NotePad" project configured as in Example 1.

Open and click . Choose "File > New ... > Project ... > Android > Android Sample Project" "Next" "Android 2.3.3"
build target and click . Choose sample, name it and click Finish."Next" "Notepad > tests" "NotePadTests"

Right click on the NotePadTests project in Package Explorer. Open "Project Properties > Java Build Path >
. Add project to the list.Projects" "NotePad"

Click on the "Order and Export" tab, select NotePad checkbox. Click OK.

Open " Select checkbox.Project Properties > Clover". "Enable Clover in this project"

Set "clover+remote:file:/// tests.db?localCoverageDir=/data/data/com.example.andrandroid-c%3A%5CTemp%5C
" initstring. Disable "Relative to project dir" checkbox.oid.notepad/clover

Set flush policy to Click OK and close Properties window."At JVM shutdown and on special instruction".

 Note that there is no need to export CLOVER_RUNTIME library, because it's already exported in the
NotePad project.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 452

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Open NotePadTest class and add a tearDown() method like below:

public void tearDown() throws Exception {
 ///CLOVER:FLUSH
 super.tearDown();
}

Open NotePad/AndroidManifest.xml file and increase required API Level to 8 (it's required by
ActivityInstrumentationTestCase2):

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="8"/>

Perform full rebuild.

Right click on the NotePadTest project, select from context menu. Wait until"Run as ... > Android JUnit Test"
tests are finished.

Select NotePad and NotePadTests project in Coverage Explorer and for each of them click on the "Refresh
 button.Coverage Data"

After few seconds you shall see coverage results similar to those:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 453

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Troubleshooting

In case of problems, you can search for more information in following places:

Open . Set to Debug or Verbose. Open"Window > Preferences > Clover" "Clover plugin logging output level"
Error Log console (). You can track Clover messages like:"Window > Show view > Error Log"

retrieval of coverage data from device

Executing 'D:\Soft\Android\android-sdk\platform-tools\adb.exe pull
/data/data/com.example.android.notepad/clover/android-test.dbh3wa8ogtz4s
i_0_hut67c_h7aira7g.s
 c:\Temp\android-test.dbh3wa8ogtz4si_0_hut67c_h7aira7g.s'

removal of outdated files

deleting out of date coverage recording file:
android-test.dbhut67c_h7air9v5, timestamp < 1348064838148

loading coverage snapshots

Read header for "c:\Temp\android-test.dbhut7iw_h7aj0xtu":
Header[dbVersion=1348064838148, writeTimeStamp=1348064886310, format=0]

 loading per-test coverage snapshots

Recording data for file
"c:\Temp\android-test.dbh4ffemvct3pe_0_hut7iw_h7aj0y4l.s":
PerTestRecordingTranscript[coverage.size=64,
testTypeName='com.example.android.notepad.NotePadTest',
testMethodName='com.example.android.notepad.NotePadTest.testActivityTest
CaseSetUpProperly',
 exitMessage='null', stackTrace='null', exitStatus='Normal',
start=1348064884677]

Open ."Window > Open perspective > DDMS"

check messages in the viewLogCat
check if coverage files are written as specified in the viewFileExplorer

Known bugs

 - CLOV-1194 Implement GrowablePerTestRecorder and use it for Android instrumentation OPEN

Android Project

We are waiting for your feedback! Feel free to vote on implementing full Android support in:

 Clover for Ant - CLOV-569 Android for Clover-for-Ant OPEN

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-1194?src=confmacro
https://jira.atlassian.com/browse/CLOV-569?src=confmacro

Documentation for Clover 4.0 454

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 Clover for Maven 2&3 - CLOV-570 Android for Clover-for-Maven OPEN

 Clover for Eclipse - CLOV-1122 Android for Clover-for-Eclipse OPEN

 Clover for IDEA - CLOV-1127 Android for Clover-for-IDEA OPEN

 Clover Commandline Tools - CLOV-1126 Android for Clover Commandline Tools OPEN

Clover-for-Scala

DRAFT

We're proud to inform that Android support was initially created during one of our Atlassian days.ShipIt

Installation

A prototype has been tested using following software versions:

Scala 2.8.3
Ant 1.8.4
JDK7

Download and extract .http://www.atlassian.com/software/clover/downloads/binary/clover-ant-scala-3.1.8.zip

Usage

Building Scala application with Clover

Running instrumented application

The Clover for Scala is the prototype and therefore it by Atlassian. Theis not officially supported
following page was created for all who'd love to use our tool with the Scala language.Clover-lovers

Please raise Scala-related issues on - instead of this add comments to thisdo not Atlassian Support
page or raise questions on - we will review them and try to help in spare time.Atlassian Answers

Feel free to download and use the experimental version. Feel free to contribute by extending this
manual. Feel free to vote on and comment Scala feature request in JIRA project. We're waiting for your
feedback!!!

New to Clover?
If you haven't used Clover before, we strongly recommend spending few minutes to learn its basic
features:

1. QuickStart Guide for Clover-for-Ant

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-570?src=confmacro
https://jira.atlassian.com/browse/CLOV-1122?src=confmacro
https://jira.atlassian.com/browse/CLOV-1127?src=confmacro
https://jira.atlassian.com/browse/CLOV-1126?src=confmacro
http://www.atlassian.com/company/about/shipit
http://www.atlassian.com/software/clover/downloads/binary/clover-ant-scala-3.1.8.zip
http://support.atlassian.com
http://answers.atlassian.com

Documentation for Clover 4.0 455

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Running unit tests

Generating and viewing coverage results

Current limitations

The prototype recognizes following language constructs: statement, method, class. It does not measure branch
coverage as well as does not recognize closures (they are not shown in the report).

Troubleshooting

In case of problems, you can search for more information in following places:

Atlassian Answers

Scala feature request

We are waiting for your feedback! Feel free to vote on implementing full Scala support in Clover:

 - CLOV-1142 Expose a Service Provider Interface for Clover OPEN

 - CLOV-932 Provide support for the Scala language OPEN

Converting XML to database format

Normally, the XML report is produced the Clover database.from

But you can hack Clover and reverse the direction - create a database using data from XML report. Such
conversion have some drawbacks of course - database will be incomplete, because the database normally holds
much more data than is available in the XML file.

What are benefits of such conversion in such case? Well, you can create an HTML report out of the
"reverse-engineered" database. It means that you could generate a Clover HTML report from codeany
coverage tool which can produce an XML report in Clover-compatible format. A good example of such tool is PH

().PUnit phpunit --coverage-clover clover.xml

DRAFT PAGE DO NOT PUBLISH

There is a problem with XmlConverter - it does not read <line> tags, as a consequence do not insert
mehtods/statements/branches into the database. As a result the db model is very poor and thus an
HTML report produced not very usable.

By the way - there is also a problem with PHPUnit which produces XML without a <package> tag
leading to NPE in XmlConverter.

We should rather wait until DSL converter will be ready by Michael - see - and next rewriteCLOV-1383
this page.

http://creativecommons.org/licenses/by/2.5/au/
https://answers.atlassian.com/tags/clover/
https://jira.atlassian.com/browse/CLOV-1142?src=confmacro
https://jira.atlassian.com/browse/CLOV-932?src=confmacro
http://phpunit.de/manual/3.8/en/index.html
http://phpunit.de/manual/3.8/en/index.html
https://jira.atlassian.com/browse/CLOV-1383

Documentation for Clover 4.0 456

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

How to convert:

 // todo add SimpleXml2DbConverter source here

Measuring per-test coverage for manual tests
Clover can measure code not only code coverage from whole application run but also a coverage generated by
a single test case (JUnit / TestNG). It is possible to "hack" Clover and measure per-test coverage from manual
test cases too. What has to be done is to "tell" Clover when manual test case starts and ends.

The easiest way to provide this information is to write a JUnit test case, with one test method for each manual
test case. Clover will add "start test / end test" instrumentation to such methods. Next it's necessary run such
JUnit test together with the application - thanks to the Clover's Distributed Coverage feature it's possible to run
JUnit test and the application under test in separate JVMs.

Steps

1) Write JUnit test case having following features:

tests do not start until application under test is launched
one test method per one manual test case
single test method starts just before corresponding manual test case is started
single test method ends just after corresponding manual test case is finished

Example:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 457

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

2) Compile JUnit test case together with the application under test (produce two jars, for instance) with a
Distributed Coverage feature enabled.

flushpolicy = interval or threaded might be needed

Example:

3) Run unit test and application:

a) unit test shall be launched with -Dclover.server=true parameter, e.g.

import junit.framework.TestCase;

public class MyManualTest extends TestCase {

 public static void main(String args[]) {
 MyManualTest myTest = new MyManualTest();
 myTest.waitUntilYourApplicationStarts();
 int testNo = myTest.getTestNumber();
 switch (testNo) {
 case 1:
 myTest.testManualTest1();
 break;
 case 2:
 myTest.testManualTest2();
 break;
 }
 }

 private int getTestNumber() {
 // e.g. entered by user / read from commandline arg ...
 return 1;
 }

 private void waitUntilYourApplicationStarts() {
 // e.g. "Press any key when ready" / check for existence of some marker file
 }

 private void waitUntilTestEnds() {
 // e.g. "Press any key when test is finished" / check for some marker file
 }

 public void testManualTest1() {
 // Clover will add "test start" here
 waitUntilTestEnds();
 // Clover will add "test end" here
 }

 public void testManualTest2() {
 // Clover will add "test start" here
 waitUntilTestEnds();
 // Clover will add "test end" here
 }

}

<clover-setup initstring="/path/to/my/clover.db" flushpolicy="interval"
flushinterval="1000">
 <distributedCoverage/>
</clover-setup>

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 458

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

java -cp ...;clover.jar -Dclover.server=true MyManualTest

b) application shall be launched as usual (note that distributed coverage configuration is already compiled into
instrumented classes), e.g.

java -cp ...;clover.jar MyApplication

Browsing per-test coverage

4) Generate coverage report. In the HTML report it's possible to browse coverage contributed by given test
case(s) by clicking "Show tests" link on the class summary page.

Per-test optimization for manual tests

Because of fact that all manual test cases were wrapped into JUnit tests it's possible use per-test optimization:

create test optimization snapshot file after test execution (task)<clover-snaphsot/>
after code base changes, run optimized test set (using the selector for <junit/><clover-optimized-testset/>
task)

note that Clover-for-Ant optimization is based on test classes, not test methods (it's a limitation of
<junit> <batchtest>) so it' might be worth to have one test method per test class

It is also possible to browse "source file - test case" and "class file - test case" mapping using the
SnapshotPrinter tool:

java -cp clover.jar com.atlassian.clover.optimization.SnapshotPrinter
clover.snapshot.file

SnapshotPrinter can print mapping in plain text or in JSON format (since 3.1.11).

Updating optimization snapshot file

Introduction

Imagine a following scenario:

your project has a set of integration tests which follow a classic maven-failsafe-plugin approach:
tests are being executed in the 'integration-test' phase
but results are checked in the 'verify' phase

test cases are being recognized by Clover
... just because they are JUnit / TestNG test cases or you have defined custom test patterns for
clover2:setup MOJO
... you can see them on the "Tests"

you would like to use test optimization for them
i.e. re-run only those which were failed or related sources were modified

but Clover does not see test failures for them (in the clover.snapshot) and thus you cannot optimize
your tests correctly

this is because test case is executed in 'integration-test' phase but it does not throw any exception
(like for JUnit) because verification is performed in later phaseAssertionError

How to solve this?

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 459

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Solution

You can update Clover's Optimization Snapshot file "manually". Exact integration would depend on the
framework you are using and you need to write such integration, but in general it works this way:

1) Instrument code and run integration-tests (mvn clean clover:setup integration-test)

2) Save optimization snapshot file (clover2:snapshot)

3) Run test result verification and store failed test results (somewhere)(mvn verify)

4) Update optimization snapshot file and set status for failed tests (see code example below)

Example

A simple application which sets test duration and test failure for certain test case:

https://bitbucket.org/atlassian/maven-clover2-plugin (src/it/optmized/snapshot-hacking)

Using Clover for other programming languages

General approach

Clover works with Java and Groovy languages. If you have code written in other programming languages, you
could potentially generate XML/HTML/PDF/JSON reports for them as well. However, there are some
prerequisites:

you have another code coverage tool for that language (for example Cobertura or Emma for JVM
languages)
a structure of this programming language can be somehow mapped to the java/groovy-like structure
(file-class-method-statement)
you know the data format of the another code coverage tool

If all prerequisites are fulfilled, you could write a data converter from that coverage tool to Clover's database
format.

All you need to do is to load Clover database and call certain callback methods to fill the database with
actual data. See the page for more details.Database Structure

As soon as you have the data converter ready, you could run it within your build to generate Clover database.
You could also merge the resulting database with a database generated by Clover for Java/Groovy sources -
thanks to this you could have a single, consolidated report. Next you can run Clover reporting tools to get reports
you need.

And how the HTML report would look like for an unknown language? Well, you would see classes and methods
as usual, but it Clover would use a plain text formatter for a source page (Clover has syntax highlighters for Java
and Groovy only).

Other solutions

PHP
JSP

You must use Clover 3.1.11 or later.

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover2-plugin

Documentation for Clover 4.0 460

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Instrumenting JSP files

Clover cannot instrument JSP files directly. However, as all JSP files are translated to Java and next compiled
using standard javac compiler, it is possible to enhance generated Java sources with Clover instrumentation and
compile them. Thanks to this it is possible to get code coverage and reports for them.

JSP on Tomcat

By default, Tomcat compiles JSP file on the first access. Generated Java source code as well as compiled
classes are stored in . Luckily, Tomcat allows to<tomcat_home>/work/Catalina/localhost/<application_name>
perform pre-compilation of JSP files - classes should be bundled into WAR and proper servlet definitions added
to web.xml. More details can be found on page.http://tomcat.apache.org/tomcat-6.0-doc/jasper-howto.html

Examples

Tomcat

1) Download sample application from http://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/

2) Take sample Ant build script from http://tomcat.apache.org/tomcat-6.0-doc/jasper-howto.html

3) Add Clover-related tasks and properties, for instance:

<property name="clover.jar" location="${user.home}/clover.jar"/>
<property name="clover.db" location="${java.io.tmpdir}/clover/clover.db"/>
<property name="clover.license.path" location="${user.home}/clover.license"/>
<taskdef resource="cloverlib.xml" classpath="${clover.jar}"/>

<target name="init">
 <clover-setup initstring="${clover.db}" flushpolicy="interval"
flushinterval="500"/>
</target>

<target name="report">
 <clover-html-report initstring="${clover.db}" outdir="report"/>
</target>

...

<target name="all" depends="init, jspc, compile"> <!-- add "init" -->

Comments:

the "init" target has <clover-setup> task with flushpolicy="interval" set (so that coverage recording files will
be written at specified time interval, instead of JVM shutdown - thanks to this it's required to shutdown
Tomcat)
the "init" target has "inistring" with an absolute path to database (in order to simplify deployment as there's
no need to copy clover.db to Tomcat directory)
the "all" target depends on "init, jspc, compile"

4) Build application using "ant" command:

JSP files are precompiled into WEB-INF/classes/org/apache/jsp
clover.db is created in ${java.io.tmpdir}/clover
the is createdWEB-INF\generated_web.xml

5) Copy definitions of servlets from into . Otherwise TomcatWEB-INF/generated_web.xml WEB-INF/web.xml
would compile JSP files (without Clover instrumentation).

6) Copy also clover.jar into directory.<tomcat_home>/lib

http://creativecommons.org/licenses/by/2.5/au/
http://tomcat.apache.org/tomcat-6.0-doc/jasper-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/
http://tomcat.apache.org/tomcat-6.0-doc/jasper-howto.html

Documentation for Clover 4.0 461

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

7) Package sample.war and deploy to Tomcat (copy to).<tomcat_home>/webapps

8) Open page, click on the "To JSP page" link. Page should print "hello". Coveragehttp://localhost:8080/sample
files shall be generated in the location of clover.db database.

9) Run "ant report" in order to generate coverage report.

Using Clover for PHP

Clover does not support PHP language. However, there is a PHPUnit framework which can measure code
coverage for PHP application and to export coverage data to the Clover's XML report file format.

Just use toggle, for example:--coverage-clover

phpunit --log-junit 'reports/unitreport.xml' --coverage-clover
'reports/clover.xml' test/

Such XML file can be later used by Bamboo Clover Plugin to display code statistics on a Job Summary page
and graphs on a Plan Summary page. In order to achieve this, you have to configure manual Clover integration

http://creativecommons.org/licenses/by/2.5/au/
http://localhost:8080/sample

Documentation for Clover 4.0 462

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

in Bamboo, pointing to the XML file generated by PHPUnit. See for details.Enabling the Clover add-on

There is also a similar plug-in available for Jenkins - see page.Clover PHP Plugin

Note: PHPUnit has also an option to produce the HTML report, but this is a report in Clover's HTML format.not

phpunit --log-junit 'reports/unitreport.xml' --coverage-html
'reports/clover_html' test/

A report produced by PHPUnit looks like this:

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/BAMBOO/Enabling+the+Clover+add-on
https://wiki.jenkins-ci.org/display/JENKINS/Clover+PHP+Plugin

Documentation for Clover 4.0 463

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

References

http://phpunit.de/manual/3.8/en/index.html
https://github.com/sebastianbergmann/phpunit/
BAMBOO/Enabling the Clover add-on
https://wiki.jenkins-ci.org/display/JENKINS/Clover+PHP+Plugin

Glossary
branch coverage

code coverage

coverage

coverage clouds

decision coverage

history point

interval

method coverage

span

statement coverage

test coverage

branch coverage
Branch coverage (or 'decision coverage') is a metric that measures which possible branches incode coverage
flow control structures are followed. Clover does this by recording if the boolean expression in the control
structure evaluated to both true and false during execution.

code coverage
Code coverage (or 'test coverage', or just 'coverage') is a measurement, usually expressed as a percentage, of
how much of your source-code is being executed by your test suite.

In general, a code coverage system collects information about the running program, then combines that with

http://creativecommons.org/licenses/by/2.5/au/
http://phpunit.de/manual/3.8/en/index.html
https://github.com/sebastianbergmann/phpunit/
https://confluence.atlassian.com/display/BAMBOO/Enabling+the+Clover+add-on
http://sourceforge.net/projects/phpunit/

Documentation for Clover 4.0 464

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

source information to generate a report on the test suite's code coverage.

This information can then be used to improve the quality of the test suite, either by adding tests or modifying
existing tests to increase coverage.

coverage
Code coverage (or 'test coverage', or just 'coverage') is a measurement, usually expressed as a percentage, of
how much of your source-code is being executed by your test suite.

In general, a code coverage system collects information about the running program, then combines that with
source information to generate a report on the test suite's code coverage.

This information can then be used to improve the quality of the test suite, either by adding tests or modifying
existing tests to increase coverage.

coverage clouds

A or 'weighted list' is a way of visually representing information.Tag Cloud

In Clover, ' ' provide an instant overview of your entire project and individual packages,Coverage Clouds
enabling you to identify areas of your code that pose the highest risks or shortcomings.

For details please see . Tag Clouds

decision coverage
Branch coverage (or 'decision coverage') is a metric that measures which possible branches incode coverage
flow control structures are followed. Clover does this by recording if the boolean expression in the control
structure evaluated to both true and false during execution.

history point
A history point is a point-in-time which you define. It is used to generate .historical coverage reports

Also see the Ant task.< >clover-historypoint

interval
An interval specifies a period of time for use by the < > attribute (see and span Using Spans Specifying an

).Interval

method coverage
Method coverage is a metric that measures whether a method was entered at all duringcode coverage
execution.

span
The attribute allows you to control which coverage recordings are merged to form a current coveragespan
report. By default, Clover includes all coverage data found. You can configure it to include a different span of
coverage recordings. The span attribute lets you do this.
See also .Using Spans

statement coverage
Statement coverage is a metric that measures which statements in a body of code have beencode coverage
executed through a test run, and which statements have not.

test coverage
Code coverage (or 'test coverage', or just 'coverage') is a measurement, usually expressed as a percentage, of
how much of your source-code is being executed by your test suite.

In general, a code coverage system collects information about the running program, then combines that with
source information to generate a report on the test suite's code coverage.

This information can then be used to improve the quality of the test suite, either by adding tests or modifying
existing tests to increase coverage.

http://creativecommons.org/licenses/by/2.5/au/
http://www.joelamantia.com/ideas/tag-clouds-evolve-understanding-tag-clouds

Documentation for Clover 4.0 465

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover FAQ
Clover FAQ

 Answers to frequently asked questions about configuring and using Clover:

Top Questions For Evaluators
Can Clover Optimise My Tests?
Can I Exclude Files From Clover Coverage Reports?
Can The Clover Reports Be Configured?
Does Clover Depend On JUnit?
How Does Clover Benefit Developers?
What Are The Limitations Of Code Coverage?
What Build Tools Does Clover Integrate With?
What Is Code Coverage Analysis?
Why Does Clover Use Source Code Instrumentation?
Will Clover Integrate With My IDE?

Concepts & Usage FAQ
Can I create a Clover Report on Server A if I have the clover.db which I generated on
Server B?
Does Clover depend on JUnit?
Does Clover integrate with Maven?
Does Clover support the new language features in JDK1.5?
Does Clover work with JUnit4 and TestNG?
How are the Clover coverage percentages calculated?
How do I compare the code coverage between two releases of my code?
How do I get started with Clover?
How do I use Clover with NetBeans?
What are the limitations of Code Coverage?
What does the name "Clover" mean?
What is Code Coverage Analysis?
What is the coverage.db file and why am I seeing files like
coverage.dbxxxxxxxxx_xxxxx_xxxx?
What third-party libraries does Clover utilise?
Where did Clover originally come from?
Why does Clover instrument classes I have excluded using the 'exclude' element of the
'clover-setup' task?
Why does Clover use source code instrumentation?
Will Clover integrate with my IDE?

Eclipse Plugin FAQ
I only need instrumented classes for unit testing and I don't want to risk publishing them
to my production environment. How can I do this with Clover?
Is Clover supported on IBM's RAD?
I store my plugins and features in an Eclipse extension area. Does Clover support this?
Why can I only see coverage data for the last test case I executed?

IDEA Plugin FAQ
I've run my tests, but coverage information does not show in IDEA
What does enabling Instrument Test Source Folders do?
Where does IDEA write its log file?

Maven 2 and 3 Plugin FAQ
Deploying Instrumented Jars
How to keep Clover reports between builds?
How to remove -clover suffix from artifact name?
Is there an alternative to using the Maven Central repository?
Preparing multi-module projects for remote deployment with Clover-for-Maven 2
Troubleshooting License problems
Troubleshooting problems with displaying characters

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/CONFEVAL/Frequently+Asked+Questions+For+Clover
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401674
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401677
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401682
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401669
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401685
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401663
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401671
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401657
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401665
https://confluence.atlassian.com/pages/viewpage.action?pageId=185401672

Documentation for Clover 4.0 466

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Support Policies
Bug Fixing Policy
How to Report a Security Issue
New Features Policy
Security Advisory Publishing Policy
Security Update Policy
Severity Levels for Security Issues
Update Policy

Troubleshooting
Compiling my instrumented sources fails with a 'code too large' error.
For some statements in my code Clover reports "No Coverage information gathered for
this expression". What does that mean?
Hit count for multi-threaded test is incorrect in Clover's report.
I'm trying to get a coverage report mailed, but I keep getting "mail Failed to send email".
How do I fix this?
I'm using the maven-clover-plugin version 2.4 with a license downloaded from Atlassian
and get the message 'Invalid or missing License'
Tools for Troubleshooting Clover-for-Ant
Two questions to ask yourself first when troubleshooting Clover
When generating some report types on my UNIX server with no XServer, I get an
exception "Can't connect to X11 server" or similar.
When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my
code?
When using Clover from Ant, why do I get "Compiler Adapter
'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar?
Why does the 'Test Results' summary page report show that I have unique coverage,
when the source page shows no unique coverage?
Why do I get 0% coverage when I run my tests and then a reporter from the same
instance of Ant?
Why do I get a 'java.lang.OutOfMemoryError - PermGen space' error?
Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on?

Concepts & Usage FAQ

Do you have a question, or need help with Clover? Please or post a create a support request question
.on a forum

http://creativecommons.org/licenses/by/2.5/au/
https://support.atlassian.com/secure/Dashboard.jspa
http://answers.atlassian.com
http://answers.atlassian.com

Documentation for Clover 4.0 467

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Clover Concepts & Usage FAQ

Can I create a Clover Report on Server A if I have the clover.db which I generated on Server
B?
Does Clover depend on JUnit? — Clover has no dependence on JUnit. We mention it frequently in
our documentation only because of JUnit's widespread use in the Java development community.
Does Clover integrate with Maven? — There is a Clover Plugin for Maven and Maven2 — both are
independent open source developments supported by Cenqua/Atlassian.
Does Clover support the new language features in JDK1.5? — Clover fully supports all JDK1.5
language features.
Does Clover work with JUnit4 and TestNG? — Clover is fully compatible with JUnit4 and TestNG.
How are the Clover coverage percentages calculated? — The "total" coverage percentage of a
class (or file, package, project) is provided as a quick guide to how well the class is covered — and to
allow ranking of classes.
How do I compare the code coverage between two releases of my code?
How do I get started with Clover? — See the Clover-for-Ant QuickStart Guide
How do I use Clover with NetBeans?
What are the limitations of Code Coverage? — Code Coverage is not a "silver bullet" of software
quality, and 100% coverage is no guarantee of a bug-free application. You can infer a certain level of
quality in your tests based on their coverage, but you still need to be writing meaningful tests.
What does the name "Clover" mean? — Clover is actually a shortened version of the tool's original
name, "Cover Lover", from the nick name that the tool's author gained while writing Clover ("Mr Cover
Lover").
What is Code Coverage Analysis? — Code Coverage Analysis is the process of discovering code
within a program that is not being exercised by test cases.
What is the coverage.db file and why am I seeing files like
coverage.dbxxxxxxxxx_xxxxx_xxxx? — The coverage.db file is the instrumentation database telling
Clover the structure of your project and files during the last instrumentation event.
coverage.dbxxxxxxxxx_xxxxx_xxxx hold the code coverage from your unit test or application run.
What third-party libraries does Clover utilise?
Where did Clover originally come from? — Clover was originally developed at Cenqua (now part of
Atlassian) as an internal tool to support development of large J2EE applications.
Why does Clover instrument classes I have excluded using the 'exclude' element of the
'clover-setup' task? — There are two possible causes:
Why does Clover use source code instrumentation? — Source code instrumentation is the most
powerful, flexible and accurate way to provide code coverage analysis.
Will Clover integrate with my IDE? — Clover 2 provides an integrated plugin for Eclipse, with more
plugins soon to follow.

Can I create a Clover Report on Server A if I have the clover.db which I
generated on Server B?

Yes you can if you use the command line options. You need to copy over your coverage.db and all the
coverage.db* files that were generated as well as copying over the clover.jar and license that you used.

However if you do not have the source files on your Server A, that you did have on your Server B you are going
to get a number of the following errors

ERROR: C:/Applications/Confluence_STD/Source
Code/confluence-2.9-source/confluence-project/confluence/src/test/java/c
om/atlassian/integrationtest/confluence/core/TestConfluenceClasspath.jav
a (No such file or directory)

The report you generate will have all the coverage statistics but when you try and drill down to the class, you will
get a error stating it cannot find the source file.

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 468

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

If you do have the source on Server A you can specify it using the -p option from .Console reporter

Does Clover depend on JUnit?

Q: Does Clover depend on JUnit? Clover has no dependence on JUnit. We mention it frequently in our
documentation only because of JUnit's widespread use in the Java development community. You can certainly
instrument your code and run it however you like; Clover will still record coverage which can then be used to
generate reports.

Does Clover integrate with Maven?

Q: Does Clover 1 integrate with Maven?
There is a Clover Plugin for Maven and Maven2 — both are independent open source developments supported
by Cenqua/Atlassian. See the website for details. Maven

Q: Does Clover 2 integrate with Maven?
Atlassian has brought Maven plugin development in-house. The Maven plugin remains open source. See the ins

 tructions for using Clover with Maven 2

Does Clover support the new language features in JDK1.5?

Q: Does Clover support the new language features in JDK1.5?

Clover fully supports all JDK1.5 language features.

Does Clover work with JUnit4 and TestNG?

Q: Does Clover work with JUnit4 and TestNG? Clover is fully compatible with JUnit4 and TestNG.

How are the Clover coverage percentages calculated?

Q: How are the Clover coverage percentages calculated?

The "total" coverage percentage of a class (or file, package, project) is provided as a quick guide to how well the
class is covered — and to allow ranking of classes.

The Total Percentage Coverage (TPC) is calculated using the formula:

TPC = (CT + CF + SC + MC)/(2*C + S + M){excerpt}

where

CT - conditionals that evaluated to "true" at least once
CF - conditionals that evaluated to "false" at least once
SC - statements covered
MC - methods entered

C - total number of conditionals
S - total number of statements
M - total number of methods

How do I compare the code coverage between two releases of my code?

A third party developer has created a Perl script that carries out a comparison of the coverage in two different
releases of a codebase.

See the where it was posted for more information.Atlassian Forum Page

 This functionality is not part of Clover and as such is not supported.

How do I get started with Clover?

See the Clover-for-Ant QuickStart Guide

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/ConsoleReporter
http://maven.apache.org/plugins/
http://forums.atlassian.com/thread.jspa?threadID=34519&tstart=0

Documentation for Clover 4.0 469

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

How do I use Clover with NetBeans?

Clover can be used with NetBeans 6.1 by integrating Clover for Ant into your NetBeans project build, which is
Ant-based. This integration will allow seamless instrumentation, test execution and hard-copy coverage report
generation from within NetBeans.

To start, download Clover for Ant at . Oncehttp://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
you've downloaded Clover for Ant, expand it to a separate folder (referred to as). You'll also needCLOVER_HOME
a valid Clover license file, which you can obtain at .http://www.atlassian.com/software/clover/

1. Add Clover to the NetBeans Ant

1.1 Go to Preferences->Miscellaneous->Ant and use Add JAR/ZIP to add toCLOVER_HOME/lib/clover.jar
the classpath, you can also add (or you can specify this in project's build.xml)clover.license

2. Create a new Clover Library

2.1 Open Tools/Libraries

2.2 Click "New Library..." and name it "Clover"

2.3 Add to the new library.CLOVER_HOME/lib/clover.jar

3. Use Add JAR/Folder to add to the project classpathsCLOVER_HOME/lib/clover.jar

3.1 Open Project/Properties...

3.2 In Libraries add the Clover library to the Compile, Run, Compile tests, Run tests classpaths

4. Add Clover targets to the build

4.1 Add the following to the project (go to Files view and edit this file)build.xml

<target name="-pre-init" depends="with.clover"/>
<target name="-post-clean" depends="clover.clean"/>

<property name="clover.enable" value="on"/>
<property name="clover.reportdir" value="clover_html"/>
<!-- You can also specify license here
<property name="clover.license.path" value="path/to/clover.license"/>
-->

<taskdef resource="cloverlib.xml"/>

<target name="with.clover" if="clover.enable">
 <clover-setup/>
</target>

<target name="clover.report" depends="-pre-init">
 <clover-report>
 <current outfile="${clover.reportdir}">
 <format type="html"/>
 </current>
 </clover-report>
</target>

<target name="clover.clean">
 <clover-clean/>
</target>

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/software/clover/

Documentation for Clover 4.0 470

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

5. Using Clover from within NetBeans

5.1 Perform a complete clean and rebuild of the project by selecting Build->Clean and Build Main Project...

5.2 Select the project and run the target using the Ant Targets windowbuild.xml test

5.3 Run the target to generate a Clover HTML reportclover.report

5.4 The can be used to disable Clover integrationclover.enable

5.5 The can be used to control where the HTML report is generatedclover.reportdir

6. Extending the Clover integration

Because NetBeans uses a standard Ant-based build, you can use all of Clover's Ant tasks from your project
build file. This allows you to control includes and excludes, set up source-level filters, change report formats and
more. For an overview of the Clover Ant tasks, see http://confluence.atlassian.com/display/CLOVER/6.+Ant+Tas
k+Reference

What are the limitations of Code Coverage?

Q. What are the limitations of Code Coverage? Code Coverage is not a "silver bullet" of software quality,
and 100% coverage is no guarantee of a bug-free application. You can infer a certain level of quality in your
tests based on their coverage, but you still need to be writing meaningful tests.
As with any metric, developers and project management should be careful not to over-emphasize coverage,
because this can drive developers to write unit tests that just increase coverage, at the cost of actually testing
the application meaningfully.

What does the name "Clover" mean?

Q: What does the name "Clover" mean? Clover is actually a shortened version of the tool's original name,
"Cover Lover", from the nick name that the tool's author gained while writing Clover ("Mr Cover Lover").

What is Code Coverage Analysis?

Q: What is Code Coverage Analysis?
Code Coverage Analysis is the process of discovering code within a program that is not being exercised by test
cases. This information can then be used to improve the test suite, either by adding tests or modifying existing
tests to increase coverage.

Code Coverage Analysis shines a light on the quality of your unit testing. It enables developers to quickly and
easily improve the quality of their unit
tests which ultimately leads to improved quality of the software under development.

For more information, see .About Code Coverage

What is the coverage.db file and why am I seeing files like
coverage.dbxxxxxxxxx_xxxxx_xxxx?

Q: What is the coverage.db file and why am I seeing files like coverage.dbxxxxxxxxx_xxxxx_xxxx? The
coverage.db file is the instrumentation database telling Clover the structure of your project and files during the
last instrumentation event. coverage.dbxxxxxxxxx_xxxxx_xxxx hold the code coverage from your unit test or
application run.

You will generally only have one instrumentation database per directory and you should expect to have many
(sometimes 100s or even 1000s) of coverage recording files per directory.

What third-party libraries does Clover utilise?

Q: What third-party libraries does Clover utilise?
Clover makes use of the following excellent third-party libraries:

Apache Ant The Ant build system.

ANTLR A public domain parser generator.

Apache Commons A set of reusable Java components.

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/6.+Ant+Task+Reference
http://confluence.atlassian.com/display/CLOVER/6.+Ant+Task+Reference
http://ant.apache.org/
http://www.antlr.org/
http://commons.apache.org

Documentation for Clover 4.0 471

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

Apache Velocity Template engine used for HTML report generation.

Cajo A lightweight library for multi-machine communication.

FastUtil A library for high-performance operations on primitive types.

Groovy An agile and dynamic language for the Java Virtual Machine.

GSON A library converting Java objects into their JSON representation.

Guava Google's core libraries for collections, caching, primitives support, string processing,
I/O etc.

iText (2.0.1) A library for generating PDF documents.

JCommon /
JFreeChart

An open source library for generating charts.

JDOM A library for accessing, manipulating, and outputting XML data from Java code.

overLIB A JavaScript library for pop-ups and tool tips.

TheJIT An open source toolkit for creating interactive data visualisations.

Utils.js A JavaScript library.

Where did Clover originally come from?

Q: Where did Clover originally come from?

Clover was originally developed at Cenqua (now part of Atlassian) as an internal tool to support development of
large J2EE applications.Existing tools were found to be too cumbersome to integrate with complex build systems
and often required specialised development and/or runtime environments that were not compatible with target
J2EE Containers. Another feature that we found lacking in other tools was simple, source-level coverage
reporting — the kind that is most useful to developers.

Why does Clover instrument classes I have excluded using the 'exclude'
element of the 'clover-setup' task?

Q: Why does Clover instrument classes I have excluded using the <exclude> element of the <clover-s
 There are two possible causes:etup> task?

Cascading build files:
Clover uses Ant patternsets to manage the includes and excludes specified in the task< >clover-setup
. By default Ant does not pass these patternsets to the sub-builds. If you are using
a master-build/sub-build arrangement, with compilation occuring in the sub-builds and < >clover-setup
done in the master-build, you will need to explicitly pass these patternsets as references:

<ant ...>
<reference refid="clover.files"/>
<reference refid="clover.useclass.files"/>
</ant>

Excluded files are still registered in the Clover database:
Clover's database is built incrementally, and this can mean that files that are now excluded but were
previously included are still reported on. The simple workaround is to delete the Clover database
whenever you change the Clover includes or excludes. This is fixed in Clover 1.2.

To prevent library version mismatches, all of these libraries have been obfuscated and/or repackaged
and included in the Clover JAR. We do this to prevent pain for users who may use different versions of
these libraries in their projects.

http://creativecommons.org/licenses/by/2.5/au/
http://velocity.apache.org/
https://cajo.dev.java.net/
http://fastutil.dsi.unimi.it/
http://groovy.codehaus.org/
http://code.google.com/p/google-gson
http://code.google.com/p/guava-libraries/
http://itextpdf.com
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.jdom.org/
http://www.macridesweb.com/oltest
http://thejit.org/
http://codepraxis.com

Documentation for Clover 4.0 472

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Why does Clover use source code instrumentation?

Q: Why does Clover use source code instrumentation?Source code instrumentation is the most powerful,
flexible and accurate way to provide code coverage analysis.The following table compares different methods of
obtaining code coverage and their relative benefits:

Possible feature JVMDI/PI Bytecode
instrumentation

Source code
instrumentation

Gathers method coverage yes yes yes

Gathers statement coverage line only indirectly yes

Gathers branch coverage indirectly indirectly yes

Can work without source yes yes no

Requires separate build no no yes

Requires specialised runtime yes yes no

Gathers source metrics no no yes

View coverage data inline with source not
accurate

not accurate yes

Source level directives to control coverage
gathering

no no yes

Control which entities are reported on limited limited yes

Compilation time no impact variable variable

Runtime performace high
impact

variable variable

Container friendly no no yes

Will Clover integrate with my IDE?

Q: Will Clover integrate with my IDE?
Clover 2 provides an integrated plugin for Eclipse, with soon to follow.Clover should also workmore plugins
happily with any integrated development environment (IDE) that provides integration with the Ant build tool.

Eclipse Plugin FAQ

Clover Eclipse Plugin FAQ

I only need instrumented classes for unit testing and I don't want to risk publishing them to my
production environment. How can I do this with Clover? — Clover supports writing both
instrumented and uninstrumented class files to different directories during a build.
Is Clover supported on IBM's RAD? — Yes, IBM RAD is supported. See Supported Platforms page
for more details.
I store my plugins and features in an Eclipse extension area. Does Clover support this? — The
"Clover 4" and "Clover 4 Ant Support" features can be placed in any extension location.
Why can I only see coverage data for the last test case I executed? — Clover can be set to only
display the coverage information gathered since your last compile — full build or auto build. The default
behaviour is to include all coverage data found.

I only need instrumented classes for unit testing and I don't want to risk

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 473

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

publishing them to my production environment. How can I do this with
Clover?

Q: I only need instrumented classes for unit testing and I don't want to risk publishing them to my
production environment. How can I do this with Clover? Clover supports writing both instrumented and
uninstrumented class files to different directories during a build.
To enable the feature, right click on your project and select properties, select Clover, select Compilation tab,
select "User specified folder" and then select a project directory where you wish instrumented classes.

All your other Eclipse plugins will then pick up uninstrumented class files from your normal output folder(s) but
instrumented classes will also be available for unit testing. The trick, though, is to ensure your JUnit or TestNG
launch configuration can see the instrumented classes before your uninstrumented ones. To do this, you will
need to modify the classpath of your JUnit launch configuration so that under User Entries the folder containing
instrumented classes is *before* the regular output folder for your project.

Is Clover supported on IBM's RAD?

Q: Is Clover supported on IBM's RAD?Yes, IBM RAD is supported. See page for moreSupported Platforms
details.

I store my plugins and features in an Eclipse extension area. Does Clover
support this?

Q: I store my plugins and features in an Eclipse extension area. Does Clover 2 support this?
The "Clover 4" and "Clover 4 Ant Support" features can be placed in any extension location.

Why can I only see coverage data for the last test case I executed?

Q: Why can I only see coverage data for the last test case I executed?

Clover can be set to only display the coverage information gathered since your last compile — full build or auto
build. The default behaviour is to include all coverage data found. You can change how far back in time Clover
will look for coverage data by setting the Span parameter in the Clover page in the Workspace preferences
(Window | Preferences).

IDEA Plugin FAQ

Clover IDEA Plugin FAQ

I've run my tests, but coverage information does not show in IDEA
What does enabling Instrument Test Source Folders do?
Where does IDEA write its log file?

I've run my tests, but coverage information does not show in IDEA

Q: I've run my tests, but coverage information does not show in IDEA

A: If you do not have "Auto Coverage Refresh" enabled, you will need to press the Refresh Button in the Clover
Tool Window.

What does enabling Instrument Test Source Folders do?

Q: What does enabling Instrument Test Source Folders do?

A: To view per-test coverage, it is required that Clover instrument all your test sources.

Where does IDEA write its log file?

Q: Where does IDEA write its log file?

A: On Mac OS X IDEA will write its log file to

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 474

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Maven 2 and 3 Plugin FAQ

Clover Maven 2 and 3 Plugin FAQ

Deploying Instrumented Jars
How to keep Clover reports between builds?
How to remove -clover suffix from artifact name?
Is there an alternative to using the Maven Central repository?
Preparing multi-module projects for remote deployment with Clover-for-Maven 2
Troubleshooting License problems
Troubleshooting problems with displaying characters

Deploying Instrumented Jars

When the target is run, the Clover lifecycle doesn't deploy its artifacts. There is a deploy JIRA issue CLMVN-9
open for this limitation.

As a work around, you can use the as follows:build-helper-maven-plugin

The general idea is to attach the instrumented jar (the primary artifact of the clover-plugin forked lifecycle)
as a secondary artifact to the original lifecycle by means of the build-helper-maven-plugin. A normal 'mvn
deploy' (which targets the original lifecycle) will then lead to the desired deployment of the instrumented
jar.
The complicated thing in the attachment of the forked lifecycle's primary artifact (the instrumented jar, that
is) to the original lifecycle is, that the forked lifecycle will inherit the whole original lifecycle's configuration,
including the introduced attachment. Thus, the forked lifecycle will have the same artifact (its primary
artifact) both as primary and as a secondary artifact. Maven will enforce distinct names for the two,
leading to necessary classifier substitution in the build-helper configuration:

~/Library/Caches/IntelliJIDEAnn/log/idea.log

(where nn=version number) by default. This value is configured however in:

/Applications/IntelliJ IDEA X.Y.Z.app/Contents/Info.plist

On Windows, IDEA will write its log file to:
~\.IntelliJIdea\system\log\idea.log

(where ~ stands for user's home directory, e.g. c:\Users\Alice). This value can be configured in
<IDEA_installation_dir>\bin\idea.properties

(it's a file common for both 32-bit and 64-bit executables).

http://creativecommons.org/licenses/by/2.5/au/
http://developer.atlassian.com/jira/browse/CLMVN-9

Documentation for Clover 4.0 475

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-instrumented-jar</id>
 <phase>verify</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>

${basedir}/target/clover/${project.artifactId}-${project.version}-clover.jar
 </file>
 <type>jar</type>
 <classifier>clovered</classifier>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
</plugin>

A subsequent 'mvn deploy' will lead to a deployment of the instrumented jar, the 'Clovered' version as a
secondary artifact along with the non-instrumented (original lifecycle's) primary artifact.

How to keep Clover reports between builds?

If you want to keep Clover reports between builds, outside of source directory you can use <outputDirectory/>
element in Clover configuration.

In your configuration put something like this:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-clover2-plugin</artifactId>
 <groupId>com.atlassian.maven.plugins</groupId>
 <configuration>
 <!-- Other configuration options -->

 <!-- Set output directory outside maven build -->
 <outputDirectory>c:\dev\cloverReport\${pom.artifactId}</outputDirectory>
 </configuration>
 <!-- Other elements -->
 </plugin>
 </plugins>
</build>

Use ${pom.artifactId} if you have multi module directory - reports for each module will be placed in a separate
directory.

How to remove -clover suffix from artifact name?

Q: How to remove -clover suffix from artifact name?

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 476

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

If I use 'clover2:instrument' it creates two artifacts: my-artifact.jar (normal code) and my-artifact-clover.jar
(instrumented). How to get rid of the suffix?

A: The clover2:instrument' goals performs instrumentation in a parallel lifecycle. Thanks to this you can be sure
that "normal" classes will not be mixed with the instrumented versions in final JAR file.

You can use a 'clover2:setup' goal, which does the same, but does not run a parallel build and does not add
"-clover" suffix to generated artifacts.

Is there an alternative to using the Maven Central repository?

Configuring Clover for Maven to use the Atlassian repository

The Atlassian repository is updated immediately when a new version of Clover is released.

Set up your by adding:.m2/settings.xml

...
<pluginGroups>
 <pluginGroup>com.atlassian.maven.plugins</pluginGroup>
</pluginGroups>
...
<profiles>
 <profile>
 <id>myprofile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 ...
 <pluginRepositories>
 <pluginRepository>
 <releases><enabled>true</enabled></releases>
 <id>atlassian-m2-repository</id>
 <name>Atlassian Maven 2.x Repository</name>
 <url>http://repository.atlassian.com/maven2</url>
 </pluginRepository>
 </pluginRepositories>
 ...
 </profile>
</profiles>

to tell Maven where to look for the plugin, and

.m2/settings.xml

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 477

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

1.

2.
3.

4.

5.

<profiles>
 ...
 <profile>
 <id>myprofile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 ...
 <properties>
 <maven.clover.licenseLocation>...path to your Clover license
file...</maven.clover.licenseLocation>
 </properties>
 ...
 </profile>
 ...
</profiles>

to set a license location property which you can refer to from all your poms.

Preparing multi-module projects for remote deployment with
Clover-for-Maven 2

This page contains instructions on preparing a multi-module project for remote deployment with
Clover-for-Maven 2.

To prepare a multi-module project with Clover-for-Maven 2,

Instrument the source with Clover and generate EAR/WAR file, then include the clover.jar
file in the directory.lib
Deploy to application server and ensure Clover can find the registry at runtime.
Copy the database, the file to a directory in the test machine and specify theclover.db
location in the Clover initstring. For details, see .Documentation on setting Clover initstring
If the project contains sub-modules, copy each database with its directory. For example:

Sub-Module1\target\clover\clover.db

Copy the text above into a location (as specified in the clover initstring) in the test machine.
Alternatively, create databases with different names.
After the tests, copy all the databases to the build machine, run an aggregate goal (merge
databases) and generate the reports from there.

Troubleshooting License problems

This page lists the various ways in which you can specify your Clover for Maven 2 license. You can try one of
the following processes if your Clover license is not being recognised correctly.

 You can obtain a free 30 day evaluation license orYou need a valid Clover license file to run Clover.
purchase a commercial license at .http://my.atlassian.com

Specifying your license location in the pom.xml file
Embedding your license in the pom.xml file
Specifying your license location in your ~/.m2/settings.xml file
Specifying your license on the command line

Specifying your license location in the pom.xml file

You can set this property to point to your clover license in the pom.xml file. In the example below,

.m2/settings.xml

http://creativecommons.org/licenses/by/2.5/au/
http://confluence.atlassian.com/display/CLOVER/Working+with+Distributed+Applications
http://my.atlassian.com

Documentation for Clover 4.0 478

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

replace'/path/to/clover.license' with the path to your Clover license file:

 ...
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <configuration>
 <licenseLocation>/path/to/clover.license</licenseLocation>
 </configuration>
 </plugin>

Embedding your license in the pom.xml file

You can configure the Maven 2 plugin to include the license data in your pom.xml file. Simply add a <license>
element inside and make its contents contain the four line Atlassian license string.<configuration>

 Some Atlassian licenses may contain XML characters, so you will need to ensure you wrap your license in
CDATA tags:

<configuration>
 <license><![CDATA[YOURLICENSESTRINGHERE]]></license>
</configuration>

This will make the Maven build less reliant on local file system layout, or the availability of remote servers.

Specifying your license location in your ~/.m2/settings.xml file

You can set this property to point to your clover license in your settings.xml file. In the example below,
replace'/path/to/clover.license' with the path to your Clover license file:

 <properties>

<maven.clover.licenseLocation>/path/to/clover.license</maven.clover.licenseLocation
>
 </properties>

Specifying your license on the command line

To specify your license at the command line, specify a property as follows (replacing '/path/to/clover.license' with
the path to your Clover license file):

-Dmaven.clover.licenseLocation=/path/to/clover.license

Troubleshooting problems with displaying characters

As of version 2.3.0, the plugin now supports a system property, and an -Dmaven.clover.encoding <encodi
 element in the pom.xml.ng>

This allows you to specify an alternate encoding for your Java source files, such as , or ' '.UTF-8 Big5

Support Policies
Welcome to the support policies index page. Here, you'll find information about how Atlassian Support can help

http://creativecommons.org/licenses/by/2.5/au/
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/Big5

Documentation for Clover 4.0 479

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

you and how to get in touch with our helpful support engineers. Please choose the relevant page below to find
out more.

Bug Fixing Policy
How to Report a Security Issue
New Features Policy
Security Advisory Publishing Policy
Security Update Policy
Severity Levels for Security Issues
Update Policy

To request support from Atlassian, please raise a support issue in our online support system. To do this, visit su
, log in (creating an account if need be) and create an issue under Clover. Our friendlypport.atlassian.com

support engineers will get right back to you with an answer.

Bug Fixing Policy

Summary

Atlassian Support will help with workarounds and bug reporting.
Critical bugs will generally be fixed in the next maintenance release.
Non critical bugs will be scheduled according to a variety of considerations.

Raising a Bug Report

Atlassian Support is eager and happy to help verify bugs — we take pride in it! Please open a support request in
our providing as much information as possible about how to replicate the problem you aresupport system
experiencing. We will replicate the bug to verify, then lodge the report for you. We'll also try to construct
workarounds if they're possible.

Customers and plugin developers are also welcome to open bug reports on our issue tracking systems directly.
Use the appropriate project on to report bugs for Atlassian products.http://jira.atlassian.com

When raising a new bug, you should rate the priority of a bug according to our .JIRA usage guidelines
Customers a filed bug in order to receive e-mail notification when a "Fix Version" is scheduled forshould watch
release.

How Atlassian Approaches Bug Fixing

Maintenance (bug fix) releases come out more frequently than major releases and attempt to target the most
critical bugs affecting our customers. The notation for a maintenance release is the final number in the version
(ie the 1 in 3.0.1).

If a bug is critical (production application down or major malfunction causing business revenue loss or high
numbers of staff unable to perform their normal functions) then it will be fixed in the next maintenance release
provided that:

The fix is technically feasible (i.e. it doesn't require a major architectural change).
It does not impact the quality or integrity of a product.

For non-critical bugs, the developer assigned to fixing bugs prioritises the non-critical bug according to these
factors:

How many of our supported configurations are affected by the problem.
Whether there is an effective workaround or patch.
How difficult the issue is to fix.
Whether many bugs in one area can be fixed at one time.

The developers responsible for bug fixing also monitor comments on existing bugs and new bugs submitted in
JIRA, so you can provide feedback in this way. We give high priority consideration to .security issues

When considering the priority of a non-critical bug we try to determine a 'value' score for a bug which takes into
account the severity of the bug from the customer's perspective, how prevalent the bug is and whether roadmap

http://creativecommons.org/licenses/by/2.5/au/
http://support.atlassian.com
http://support.atlassian.com
http://jira.atlassian.com
http://support.atlassian.com
http://jira.atlassian.com
https://confluence.atlassian.com/display/DEV/JIRA+usage+guidelines
https://confluence.atlassian.com/display/JIRA/Watching+and+Voting+on+an+Issue
https://confluence.atlassian.com/display/Support/Atlassian+Security+Policies

Documentation for Clover 4.0 480

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

features may render the bug obsolete. We combine this with a complexity score (i.e. how difficult the bug is).
These two dimensions are used when developers self serve from the bug pile.

Further reading

See for more support-related information.Atlassian Support Offerings

How to Report a Security Issue

Finding and Reporting a Security Issue

If you find a security issue in the product, open an issue on in the relevant project.https://jira.atlassian.com

Set the of the bug to ' '.security level Reporters and Developers
Set the priority of the bug to 'Blocker'.
Provide as much information on reproducing the bug as possible.

All communication about the should be performed through JIRA, so that Atlassian can keep tracksecurity issue
of the issue and get a patch out as soon as possible.

If you cannot find the right project to file your issue in, .email the details to security@atlassian.com

We are not looking for the reports listing generic "best practice" issues such as:

Specific cookies being not marked as Secure or HTTPOnly
Presence or absence of HTTP headers (X-Frame-Options, HSTS, nosniff and so on)CSP,
Clickjacking
Stack traces
Mixed HTTP and HTTPS content
Auto-complete enabled or disabled
SSL-related issues

We are also not looking for reports on the following bug classes:

Username enumeration using login or password reset features. While username enumeration can be a
vulnerability in web applications, most of Atlassian products and web sites include a number of social
features. As a result, usernames can be discovered by design in a number of ways.

Further reading

See for more support-related information.Atlassian Support Offerings

New Features Policy

Summary

When reporting a security vulnerability, please keep in mind the following:

We need a technical description that allows us to assess exploitability and impact of the issue.

Provide steps to reproduce the issue, including any URLs or code involved.
If you are reporting a cross-site scripting (XSS), your exploit should at least pop up an alert in the
browser. It is much better if the XSS exploit shows user's authentication cookie.
For a cross-site request forgery (CSRF), use a proper CSRF case when a third party causes the
logged in victim to perform an action.
For a SQL injection, we want to see the exploit extracting database data, not just producing an
error message.
HTTP request / response captures or simply packet captures are also very useful to us.

Please refrain from sending us links to non-Atlassian web sites, or reports in PDF / DOC / EXE files.
Image files are ok. Make sure the bug is exploitable by someone other than the user himself (e.g.
"self-XSS").

Without this information it is not possible to assess your report and it is unlikely to be addressed.

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings
https://jira.atlassian.com
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings

Documentation for Clover 4.0 481

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

We encourage and display customer comments and votes openly in our issue tracking system, http://jira.a
.tlassian.com

We do not publish roadmaps.
Product Managers review our most popular voted issues on a regular basis.
We schedule features based on a variety of factors.
Our is distinct from this process.Atlassian Bug Fixing Policy
Atlassian provides consistent updates on the top 20 issues.

How to Track what Features are Being Implemented

When a new feature or improvement is scheduled, the 'fix-for' version will be indicated in the JIRA issue. This
happens for the upcoming release only. We maintain roadmaps for more distant releases internally, but because
these roadmaps are often pre-empted by changing customer demands, we do not publish them.

How Atlassian Chooses What to Implement

In every we to implement highly requested features, but it is not the only determining factor.major release aim
Other factors include:

Customer contact: We get the chance to meet customers and hear their successes and challenges at
Atlassian Summit, Atlassian Unite, developer conferences, and road shows.
Customer interviews: All product managers at Atlassian do customer interviews. Our interviews are not
simply to capture a list of features, but to understand our customers' goals and plans.
Community forums: There are large volumes of posts on , of votes and comments on answers jira.atlassi

, and of conversations on community forums like groups on LinkedIn.an.com
Customer Support: Our support team provides clear insights into the issues that are challenging for
customers, and which are generating the most calls to support
Atlassian Experts: Our provide insights into real-world customer deployments, especially forExperts
customers at scale.
Evaluator Feedback: When someone new tries our products, we want to know what they liked and
disliked and often reach out to them for more detail.
In product feedback: The that we embed our products for evaluators and ourJIRA Issue Collectors
Early Access Program give us a constant pulse on how users are experiencing our product.
Usage data: Are customers using the features we have developed?
Product strategy: Our long-term strategic vision for the product.
Please read our for a more detailed explanation.post on Atlassian Answers

How to Contribute to Feature Development

Influencing Atlassian's release cycle
We encourage our customers to vote on issues that have been raised in our public JIRA instance, http://jira.atlas

. Please find out if your request - if it does, vote for it. If you do not find it you may wish tosian.com already exists
create a new one.

Extending Atlassian Products
Atlassian products have powerful and flexible extension APIs. If you would like to see a particular feature
implemented, it may be possible to develop the feature as a plugin. Documentation regarding the isplugin APIs
available. Advice on extending either product may be available on the user mailing-lists, or at .Atlassian Answers

If you require significant customisations, you may wish to get in touch with our . They specialise inpartners
extending Atlassian products and can do this work for you. If you are interested, please .contact us

Further reading

See for more support-related information.Atlassian Support Offerings

Security Advisory Publishing Policy

Publication of Security Advisories

When a security vulnerability in an Atlassian product is discovered and resolved, Atlassian willcritical severity
inform customers through the following mechanisms:

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com
http://jira.atlassian.com
https://confluence.atlassian.com/display/Support/Atlassian+Bug+Fixing+Policy
https://confluence.atlassian.com/display/DEV/Versioning+of+Releases
http://answers.atlassian.com
http://jira.atlassian.com
http://jira.atlassian.com
http://www.atlassian.com/resources/experts/?tab=find-an-expert
https://marketplace.atlassian.com/plugins/com.atlassian.jira.collector.plugin.jira-issue-collector-plugin
https://answers.atlassian.com/questions/110373/how-does-the-jira-team-use-jira-atlassian-com
http://jira.atlassian.com
http://jira.atlassian.com
https://confluence.atlassian.com/pages/createpage.action?spaceKey=DEV&title=Creating+a+Feature+Request&linkCreation=true&fromPageId=201294576
https://developer.atlassian.com/display/DOCS/Introduction+to+the+Atlassian+Plugin+SDK
https://answers.atlassian.com
http://www.atlassian.com/about/partners/
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings
https://confluence.atlassian.com/display/SUPPORT/Severity+Levels+for+Security+Issues

Documentation for Clover 4.0 482

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

We will post a security advisory in the latest documentation of the affected product at the same time as
releasing a fix for the vulnerability.
We will send a copy of all posted security advisories to the for the product'Technical Alerts' mailing list
concerned.

 To manage your email subscriptions and ensure you are on this list, please go to Note: my.atlassian.com
and click 'Communications Centre' near the top right of the page.
If the person who reported the vulnerability wants to publish an advisory through some other agency,
such as , we will assist in the production of that advisory and link to it from our own.CERT

If you want to track non-critical severity security vulnerabilities, you need to monitor the issue trackers for the
relevant products on . For example, for JIRA and http://jira.atlassian.com https://jira.atlassian.com/browse/JRA ht

 for Confluence. Security issues in trackers will be marked with a "security"tps://jira.atlassian.com/browse/CONF
label. All security issues will be listed in the release notes of the release where they have been fixed, similar to
other bugs.

One of the ways to monitor updates to security issues is subscribing to the results of a via emailsample search
or RSS.

Further reading

See for more support-related information.Atlassian Support Offerings

Security Update Policy

As Clover is a plugin, patches do not apply. Instead, a new version of the plugin is released.

You can follow the progress of Clover development on our .issue tracking system

You can follow Clover releases on the .Release Notes

For information about the timeliness and prioritisation of Clover releases, see the .Atlassian Bug Fixing Policy

Further reading

See for more support-related information.Atlassian Support Offerings

Severity Levels for Security Issues

Severity Levels

Atlassian security advisories include a severity level. This severity level is based on our self-calculated CVSS
score for each specific vulnerability. CVSS is an industry standard vulnerability metric. You can learn more about
CVSS at web site.FIRST.org

CVSS scores are mapped into the following severity ratings:

Critical
High
Medium
Low

An approximate mapping guideline is as follows:

CVSS score range Severity in advisory

0 – 2.9 Low

3 – 5.9 Medium

6.0 – 7.9 High

8.0 – 10.0 Critical

Below is a summary of the factors which illustrate types of vulnerabilities usually resulting in a specific severity
level. Please keep in mind that this rating does not take into account details of your installation.

Severity Level: Critical

http://creativecommons.org/licenses/by/2.5/au/
http://my.atlassian.com
http://www.cert.org/
http://jira.atlassian.com
https://jira.atlassian.com/browse/JRA
https://jira.atlassian.com/browse/CONF
https://jira.atlassian.com/browse/CONF
https://jira.atlassian.com/issues/?filter=36465
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings
http://jira.atlassian.com/browse/CLOV
http://confluence.atlassian.com/display/CLOVER/Clover+Release+Notes
https://confluence.atlassian.com/display/Support/Atlassian+Bug+Fixing+Policy
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings
http://www.first.org/cvss/cvss-guide.html

Documentation for Clover 4.0 483

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Vulnerabilities that score in the critical range usually have most of the following characteristics:

Exploitation of the vulnerability results in root-level compromise of servers or infrastructure devices.
The information required in order to exploit the vulnerability, such as example code, is widely available to
attackers.
Exploitation is usually straightforward, in the sense that the attacker does not need any special
authentication credentials or knowledge about individual victims, and does not need to persuade a target
user, for example via social engineering, into performing any special functions.

For critical vulnerabilities, is advised that you patch or upgrade as soon as possible, unless you have other
mitigating measures in place. For example, if your installation is not accessible from the Internet, this may be a
mitigating factor.

Severity Level: High

Vulnerabilities that score in the high range usually have some of the following characteristics:

The vulnerability is difficult to exploit.
Exploitation does not result in elevated privileges.
Exploitation does not result in a significant data loss.

Severity Level: Medium

Vulnerabilities that score in the medium range usually have some of the following characteristics:

Denial of service vulnerabilities that are difficult to set up.
Exploits that require an attacker to reside on the same local network as the victim.
Vulnerabilities that affect only nonstandard configurations or obscure applications.
Vulnerabilities that require the attacker to manipulate individual victims via social engineering tactics.
Vulnerabilities where exploitation provides only very limited access.

Severity Level: Low

Vulnerabilities in the low range typically have very little impact on an organisation's business. Exploitation of
such vulnerabilities usually requires local or physical system access.

Further reading

See for more support-related information.Atlassian Support Offerings

Update Policy

As Clover is a plugin, patches do not apply. Instead, a new version of the plugin is released.

You can follow the progress of Clover development on our .issue tracking system

You can follow Clover releases on the .Release Notes

For information about the timeliness and prioritisation of Clover releases, see the .Atlassian Bug Fixing Policy

Further reading

See for more support-related information. Atlassian Support Offerings

Troubleshooting

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings
http://jira.atlassian.com/browse/CLOV
http://confluence.atlassian.com/display/Clover/Clover+Release+Notes
https://confluence.atlassian.com/display/Support/Atlassian+Bug+Fixing+Policy
https://confluence.atlassian.com/display/Support/Atlassian+Support+Offerings

Documentation for Clover 4.0 484

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

Clover Troubleshooting

Compiling my instrumented sources fails with a 'code too large' error.
For some statements in my code Clover reports "No Coverage information gathered for this
expression". What does that mean? — Clover will not measure coverage of a conditional expression
if it contains an assignment operator.
Hit count for multi-threaded test is incorrect in Clover's report.
I'm trying to get a coverage report mailed, but I keep getting "mail Failed to send email". How
do I fix this? — The Ant task depends on external libraries that are not included in the Ant distribution.
You need to install the following jars in ANT_HOME/lib, both freely available from Sun:
I'm using the maven-clover-plugin version 2.4 with a license downloaded from Atlassian and
get the message 'Invalid or missing License'
Tools for Troubleshooting Clover-for-Ant
Two questions to ask yourself first when troubleshooting Clover
When generating some report types on my UNIX server with no XServer, I get an exception
"Can't connect to X11 server" or similar. — This is a limitation of the Java implementation on Unix.
When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code? — T
his probably indicates that you do not have clover.jar in your runtime classpath.
When using Clover from Ant, why do I get "Compiler Adapter
'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar? — You need
to install Clover in Ant's classpath.
Why does the 'Test Results' summary page report show that I have unique coverage, when
the source page shows no unique coverage? — The source view only shows unique coverage
aggregated at the line level, not per statement or branch. The unique coverage indicates that either:
Why do I get 0% coverage when I run my tests and then a reporter from the same instance of
Ant? — This occurs because Clover hasn't had a chance to flush coverage data out to disk.
Why do I get a 'java.lang.OutOfMemoryError - PermGen space' error?
Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on? — A:
Instrumenting with Clover increases the amount of memory that the compiler requires in order to compile.

Compiling my instrumented sources fails with a 'code too large' error.

A single Java method cannot compile to more than 64KB of byte code. As Clover adds statements to record
code coverage to every statement in your source file, a method which is close to this limit may exceed it when
instrumented. The solutions at present are:

As a work-around, split your method into two smaller ones. Or;
Exclude the entire file using the <files> element of .<clover-setup>

For some statements in my code Clover reports "No Coverage information
gathered for this expression". What does that mean?

Q: For some statements in my code Clover reports "No Coverage information gathered for this
expression". What does that mean?
Clover will not measure coverage of a conditional expression if it contains an assignment operator. In practice
we have found this only a minor limitation. To understand why Clover has this limitation, consider the following
(very contrived) code fragment:

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 485

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.

1 public int foo(int i) {
2 int j;
3 if ((j = i) == 1) {
4 return j;
5 }
6 return 0;
7 }
\\
at (2) the variable "j" is declared but not initialised.
at (3) "j" is assigned to inside the expression
at (4) "j" is referenced.

During compilation, most compilers can inspect the logic of the conditional at to determine that will be(3) "j"
initialised by the time it is referenced , since evaluating the expression will always result in being(4) (3) "j"
given a value. So the code will compile. But Clover has to rewrite the conditional at so that it can measure(3)
coverage, and the rewritten version makes it harder for compilers to infer the state of when it is referenced"j"
at . This means that the instrumented version may not compile. For this reason, Clover scans conditionals(4)
for assignment. If one is detected, the conditional is not instrumented.

Hit count for multi-threaded test is incorrect in Clover's report.

This is limitation of Clover's per-test coverage whereby it does not support parallel test execution.

There is an outstanding feature request for this issue - .CLOV-418

Please refer to for further details on how Atlassian chooseImplementation of New Features and Improvements
features for inclusion into our products.

I'm trying to get a coverage report mailed, but I keep getting "mail Failed to
send email". How do I fix this?

Q: I'm trying to get a coverage report mailed to the team as shown in your example, but I keep getting
"[mail] Failed to send email". How do I fix this?
The Ant task depends on external libraries that are not included in the Ant distribution. You need to<mail>
install the following jars in ANT_HOME/lib, both freely available from Sun:

mail.jar — from the JavaMail API ([http://java.sun.com/products/javamail/)
activation.jar — from the JavaBeans Activation Framework (http://java.sun.com/products/javabeans

)/jaf/index.jsp

You should also check the details of your local SMTP server with your system administrator. It may help to
specify these details directly to the task:<mail>

<mail mailhost="smtp.myisp.com" mailport="25" from="build@example.com"
tolist="team@example.com" subject="coverage criteria not met"
message="$
{coverageFailed}
" files="coverage_summary.pdf"/>

I'm using the maven-clover-plugin version 2.4 with a license downloaded
from Atlassian and get the message 'Invalid or missing License'

Version 2.4 of the maven-clover-plugin uses Clover 1.3.13, which doesn't recognise new Atlassian-issued Clover
licences.

You need to use version 2.4.1 of the plugin, which is hosted at .http://repository.atlassian.com/maven2

You'll need to update your with the new version:pom.xml

http://creativecommons.org/licenses/by/2.5/au/
http://jira.atlassian.com/browse/CLOV-418
http://confluence.atlassian.com/display/DEV/Implementation+of+New+Features+Policy
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/javabeans/jaf/index.jsp
http://repository.atlassian.com/maven2

Documentation for Clover 4.0 486

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-clover-plugin</artifactId>
 <version>2.4.1</version>
 <configuration>
 <licenseLocation>...your licence file path...</licenseLocation>
 ...
 </configuration>
</plugin>

and add the Atlassian public repository as a plugin repository in your or file:pom.xml ~/.m2/settings.xml

<pluginRepositories>
 <pluginRepository>
 <id>atlassian-m2-repository</id>
 <url>http://repository.atlassian.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Tools for Troubleshooting Clover-for-Ant

Troubleshooting

To enable logging of the Clover installation, set the environment variable to ANT_OPTS '-Dclover.deb
ug=true'
Run ant with the and options-debug -verbose
Certain environments may require the clover.jar to be placed directly on Ant's Classpath. Details are
outlined .here
To enable logging of Clover at runtime set the environment variable -Dclover.logging.level=debu

 on the JVM that is running your Clover instrumented code. e.g. the JUnit JVM, the Tomcat JVM.g

Two questions to ask yourself first when troubleshooting Clover

Two questions to ask yourself first when troubleshooting Clover:

Does my code compile and run as expected without Clover?
You need to ensure that your project compiles and runs as expected before attempting to use Clover.
Am I using the latest version of Clover?
The latest version of Clover incorporates many bugfixes and improvements.

If the answers in this section don't fix the problem you are encountering, please don't hesitate to .contact us

When generating some report types on my UNIX server with no XServer, I get
an exception "Can't connect to X11 server" or similar.

Q: When generating some report types on my UNIX server with no XServer, I get an exception "Can't
connect to X11 server" or similar.
This is a limitation of the Java implementation on Unix.Prior to JDK 1.4, the java graphics toolkit (AWT) requires
the presence of an XServer, even in the case where no "on-screen" graphics are rendered.
With JDK1.4, you can set the System property to avoid this problem. Whenjava.awt.headless=true
running Ant, this is most easily achieved by using the ANT_OPTS environment variable:

export ANT_OPTS=-Djava.awt.headless=true

http://creativecommons.org/licenses/by/2.5/au/
http://support.atlassian.com

Documentation for Clover 4.0 487

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

When running your code outside Ant, you may also need to set this system property.

With earlier JDKs, you need to use a virtual X Server. See http://java.sun.com/products/java-media/2D/forDevel
.opers/java2dfaq.html#xvfb

When using Clover, why do I get a java.lang.NoClassDefFoundError when I
run my code?

Q: When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code?This probably
indicates that you do not have in your runtime classpath. See in clover.jar 'Classpath Issues' Working with

.Distributed Applications

When using Clover from Ant, why do I get "Compiler Adapter
'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or
similar?

Q: When using Clover from Ant, why do I get "Compiler Adapter
'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar?
You need to install Clover in Ant's classpath.

Depending on what version of Ant you are using, there are several options to do this. See .Installation Options

Why does the 'Test Results' summary page report show that I have unique
coverage, when the source page shows no unique coverage?

Q: Why does the 'Test Results' summary page report show that I have unique coverage, when the source
page shows no unique coverage?

The source view only shows unique coverage aggregated at the line level, not per statement or branch. The
unique coverage indicates that either:

the test was the only one to follow a particular path through a branch; or
the test uniquely covered a statement on a line containing more than one statement.

 Unique coverage is indicated by .colour-coding

Why do I get 0% coverage when I run my tests and then a reporter from the
same instance of Ant?

Q: Why do I get 0% coverage when I run my tests and then a reporter from the same instance of Ant?

This occurs because Clover hasn't had a chance to flush coverage data out to disk. By default Clover flushes
coverage data only at JVM shutdown or when explicitly directed to (using an). The simplest thinginline directive
to do is to use the {{fork="true"}}attribute when running your tests. The tests will then be run in their own JVM,
and the coverage data will be flushed when that JVM exits. Alternatively, you can use interval-based flushing by
changing the . Flush Policy

Why do I get a 'java.lang.OutOfMemoryError - PermGen space' error?

This page contains instructions relating to this error:

java.lang.OutOfMemoryError: PermGen space

If you see this error when running Clover, you may need to increase the PermGen settings on your server JVM.

This error may sometimes come about when implementing Clover on large projects, due to Clover's additional
requirements.

The required memory can be increased by setting the setting on the JVM.-XX:MaxPermSize

http://creativecommons.org/licenses/by/2.5/au/
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvfb
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvfb

Documentation for Clover 4.0 488

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

See the KB article for more details.OutOfMemoryError: PermGen

Why do I get an java.lang.OutOfMemoryError when compiling with Clover
turned on?

Q: Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on?

A: Instrumenting with Clover increases the amount of memory that the compiler requires in order to compile.To
solve this problem, you need to give the compiler more memory. Increasing the memory available to the
compiler depends on how you are launching the compiler:

If you are using the "in-process" compiler (the task with the attribute set to), you<javac> "fork" false
will need to give Ant itself more memory to play with. To do this, use the ANT_OPTS environment
variable to set the heap size of the JVM used to run Ant:

export ANT_OPTS=-Xmx256m

If you are using an external compiler (the <javac> task with the "fork" attribute set to true), you can set the
 and attributes of the task:memoryInitialSize memoryMaximumSize javac

<javac srcdir="${src}"
destdir="${build}"
fork="true"
memoryInitialSize="128m"
memoryMaximumSize="256m"/>

If you are using Intellij, increase the Maximum heap size on the Java Compiler.

Screenshot: Adjusting Heap Size in IntelliJ IDEA

Clover Resources
Resources for Evaluators

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/x/ootKGQ

Documentation for Clover 4.0 489

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Free Trial
Feature Tour

Resources for Administrators

Clover Knowledge Base
Clover FAQ
Guide to Installing an Atlassian Integrated Suite
The big list of Atlassian gadgets

Forum

Atlassian Answers - a quick way to find answers for common problems

Twitter

@cloverallover - an unofficial developer tweet about Clover. You will get notifications about new Clover
releases, features, tips & tricks etc.
@atlassiandev - the Atlassian Developer Relations Team tweet.
@AtlDevTools - a Dev Tools Guru - follow to receive updates on Atlassian Developer Tools - FishEye,
Crucible & Bamboo - including news, tips, and answers to your questions.

Support

Atlassian Support - raising a support ticket
Support Policies

Feature Requests

Issue Tracker and Feature Requests for Clover - bugs, features, development road map, release notes

Downloadable Documentation

Clover documentation in PDF, HTML or XML formats - generated for every feature release

Plug-ins

Clover Developer Documentation - guides how to develop Clover integrations with other tools
Atlassian Marketplace - search for Clover-related plug-ins for Atlassian tool suite

Mailing Lists

Visit to sign up for mailing lists relating to Atlassian products, such as technicalhttp://my.atlassian.com
alerts, product announcements and developer updates.

Clover Development Hub
If you're doing custom development with Clover, you've come to the right place.

The Clover API is aimed at CI server vendors wishing to add support for Clover to their products, or users
wishing to program new solutions for meshing Clover's Test Optimization with your test framework (see the 'Ref

' section below).erence Documentation

Clover Plugins

Bamboo and users: Clover already has working plugins that integrate Clover into these productsHudson
(see the ' ' section below). No additional programming is required for Bamboo or HudsonClover Plugins
users to take advantage of Clover.

http://creativecommons.org/licenses/by/2.5/au/
http://www.atlassian.com/software/clover/CloverDownloadCenter.jspa
http://www.atlassian.com/software/clover/tour/
https://confluence.atlassian.com/display/CLOVERKB
https://confluence.atlassian.com/display/ATLAS/Guide+to+Installing+an+Atlassian+Integrated+Suite
https://confluence.atlassian.com/display/GADGETS/All+Atlassian+Gadgets
https://answers.atlassian.com/tags/clover
https://twitter.com/cloverallover
https://twitter.com/atlassiandev
https://twitter.com/AtlDevTools
http://support.atlassian.com
http://jira.atlassian.com/browse/CLOV
https://confluence.atlassian.com/display/ALLDOC/Clover+Documentation+Directory
https://marketplace.atlassian.com/search?q=clover
http://my.atlassian.com
https://studio.plugins.atlassian.com/wiki/display/BCOV/Home
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin

Documentation for Clover 4.0 490

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

These plugins allow customers using continuous integration servers to easily make use of Clover's advanced
code coverage analysis, in a turnkey solution.

Continuous Integration (CI) Plugins

Hudson Clover Plugin
Integrates Hudson with Clover code coverage analysis.

Jenkins Clover Plugin
Integrates Jenkins with Clover code coverage analysis.

Bamboo Clover Plugin
Integrates Bamboo with Clover, provided by Atlassian.

Coverage Plugin for Bamboo
Plugin developed by community which integrates Atlassian Bamboo with code coverage
analysis tools like Clover, Emma, Cobertura.

Reference Documentation

Clover Development Documentation

Clover API Javadocs
The Clover API allows developers to develop new hooks for Clover, to connect it into
Continuous Integration servers such as , , and similarAnthillPro TeamCity Cruise Control
products.

The Clover API also provides classes to optimise tests programatically. This may be necessary if you
are using a custom testing framework or your tests are defined in JUnit TestSuites.

JSON Reference
The JSON format is supported as an output type in Clover specifically to create integration
opportunities with other applications. The JSON data from Clover is easy to manipulate
programmatically, allowing innovative developers to use it for displaying or processing their
coverage data in novel ways.

Plugin Hosting on Bitbucket or ecosystem.atlassian.net

Atlassian can host your plug-in development project. We'll provide a Mercurial or Git repository, Confluence
space and a JIRA project.

The Atlassian Developer Blog

For up-to-date news and opinions from the Clover, FishEye and other Atlassian development teams:

http://blogs.atlassian.com/blog-cat/developer

Clover for Grails Developer Guide

Preconditions

You have a version of Grails installed and $GRAILS_HOME is set to this. 2.0.3
Note that the minimum Grails version required to run the Clover-for-Grails plugin -is currently 1.3.0
it's declared in CloverGrailsPlugin.groovy file, but
the compilation and deployment of the plugin itself can be done using higher Grails version - it's
delcared in application.properties file.

Set JAVA_HOME to (otherwise you'll end up with JDK 1.6 java.lang.NoClassDefFoundError:
 error)org.codehaus.gant.GantBuilder

Getting the Source Code

http://creativecommons.org/licenses/by/2.5/au/
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Source+code
https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
https://confluence.atlassian.com/display/BAMBOO/Enabling+the+Clover+add-on
https://studio.plugins.atlassian.com/wiki/display/BCOV/Bamboo+Coverage+Plugin
http://docs.atlassian.com/atlassian-clover/
http://www.anthillpro.com/html/products/anthillpro/default.html
http://www.jetbrains.com/teamcity/
http://cruisecontrol.sourceforge.net/
http://confluence.atlassian.com/display/CLOVER/JSON+reference
https://developer.atlassian.com/display/DOCS/Plugin%20Hosting%20on%20JIRA%20Studio
https://developer.atlassian.com/display/DOCS/Plugin%20Hosting%20on%20JIRA%20Studio
http://blogs.atlassian.com/developer/
http://blogs.atlassian.com/blog-cat/developer/
http://dist.codehaus.org/grails/grails-1.3.0.zip

Documentation for Clover 4.0 491

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.

2.
a.

1.
2.
3.
4.

The Clover-for-Grails plug-in source is stored in Mercurial repository on Bitbucket.org. To get a local copy of the
source code, a Mercurial client is required.

The following command will checkout the source code of the :atlassian/grails-clover-plugin

hg clone ssh://hg@bitbucket.org/atlassian/grails-clover-plugin

Installing the Plugin

The plugin can then be built, tested and installed via:

grails package-plugin --plain-output --verbose
grails test maven-install --plain-output --verbose # it puts zip into local maven
cache ~/.m2

Running Integration Tests

Test it against the enclosed Grails test applications located in testcases directory: daily-groove, petclinic,
petclinic203, petclinic210, weceem.

Update plugin clover number in /testcases/ /grails-app/conf/BuildConfig.groovy like<grails> <project>

plugins {
 build ":clover:X.X.X"
 ...
}

Change directory to and run <grails>/testcases/<project_name>
grails test-app -clover.on -clover.view

 you have to set GRAILS_HOME and PATH variables according to test project settings.

Submitting a Patch

To submit a patch:

Make and test the change in your local work area
Create a JIRA issue in project "Clover" (), set "Grails Plugin" component.CLOV
Ensure any new features/configuration options have been documented in the issue description.
Commit changes and:

clone a repository on bitbucket.org and push changes to it
create a pull request for projectatlassian/grails-clover-plugin

or

generate a patch by running the following command in your local work area (where XXXX is the id
of the JIRA issue created above)

hg diff > CLOV-XXXX.patch

Upload the patch to the JIRA issue you created.

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/grails-clover-plugin
https://jira.atlassian.com/browse/CLOV
https://bitbucket.org/atlassian/grails-clover-plugin

Documentation for Clover 4.0 492

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Binaries

Stable releases can be downloaded from site.Grails Plugins

Creating Grails plugins using Clover

Important notice

In case you're developing a Grails plugin and this plugin is referencing the Clover plugin, it's necessary to define
that the Clover plugin is not exported. Otherwise, the Clover plugin will be transitively picked up by an application
using your own plug-in. As a consequence, it can lead to conflicts in case when the application is also
referencing a Clover plugin, but in a different version.

Example how to define a Clover dependency in a Grails plugin:

grails.project.dependency.resolution = {
 plugins {
 compile(":clover:3.2.0") {
 export = false
 }
 }
}

Clover for Hudson Developer Guide

Common

Preconditions

you have proper credentials in ~/.m2/settings.xml

<server>
 <id>sonatype-nexus-snapshots</id>
 <username>xxxxxx</username>
 <password>xxxxxx</password>
</server>
<server>
 <id>sonatype-nexus-staging</id>
 <username>xxxxxx</username>
 <password>xxxxxx</password>
</server>

JAVA_HOME points to JDK1.6+
M2_HOME points to (otherwise checksum validation will fail on OSS)Maven 3.0.4+

BuildConfig.groovy

Hudson was migrated to the Eclipse Foundation. It's being hosted on the sitehttp://eclipse.org/hudson/
(mailing list). The old site is still available and hostshudson-dev@eclipse.org http://hudson-ci.org/
plugins not under by EPL license (including Clover-for-Hudson).

Sources were also split into two copies (disaster, don't ask me why):

Hudson 2 - https://github.com/hudson2-plugins
Hudson 3 - https://github.com/hudson3-plugins

http://creativecommons.org/licenses/by/2.5/au/
http://grails.org/plugin/clover
http://eclipse.org/hudson/
http://hudson-ci.org/
https://github.com/hudson2-plugins
https://github.com/hudson3-plugins

Documentation for Clover 4.0 493

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.

5.

a.
b.

c.

d.
e.

6.

1.

2.
3.
4.
5.

You have GPG signature configured to sign artefacts

Hudson 2

Preconditions

You are a member of the Hudson Plug-in Development team, including
permissions to publish release artefacts on https://oss.sonatype.org/content/repositories/releases/
org/jvnet/hudson/plugins/clover
write permissions in master git repository on https://github.com/hudson2-plugins/clover-plugin
account on Hudson Wiki in order to edit the http://wiki.hudson-ci.org/display/HUDSON/Clover+Plug

 pagein

Build and Test

Clone the locally and later push directly.git@github.com/hudson2-plugins/clover-plugin.git
Create a bug on (Hudson project, Plugins component) for the issue you are fixing.https://bugs.eclipse.org
Make the necessary changes
Bump plug-in version number (in pom.xml).
Bump the dependency version on Clover Core if necessary (in pom.xml).
Bump version if necessary (in pom.xml).org.jvnet.hudson.plugins:hudson-plugin-parent
Test by running Hudson with the Clover plug-in installed and setting up a Clovered project for CI. This can
be achieved via:
mvn clean hpi:run

it starts Hudson on localhost:8080 by default, open it in a web browser
open "Manage Hudson" > "Manage plugins" > "Installed" and check if new "Hudson Clover Plugin"
is listed
configure new project (you can use MoneyBags as a test case) and a build job (e.g. "freestyle
project" with "ant task")
configure "Post-build actions" > "Publish Clover Coverage Report" in the build job
run "Build now" and check if Clover summary report is available

Commit changes and push to GitHub. Include your Bugzilla bug ID from above in the commit line.

Release and Publish

Detailed instruction is . If this is your first time publishing a Hudson release, allow at least a day or two forhere
Sonatype to process your JIRA requests, set you up and eventually enable Central Sync.

Steps in short:

Go to your local clover-plugin workspace and type
 mvn release:clean
 mvn release:prepare -DpushChanges=false
 mvn release:perform -DlocalCheckout=true
Login to Nexus OSS, open Staging Repositories, click "Close" button.
Download clover-X.X.X.hpi from OSS Nexus staging area and install and test it in your Hudson instance.
If works OK, push changes to and click "Release" button on Nexus OSS.hudson2-plugins/clover-plugin
Update the content of wiki page.HUDSON/Clover+Plugin

Hudson 3

Preconditions

You are a member of the Hudson Plug-in Development team, including
permissions to publish release artefacts on https://oss.sonatype.org/content/repositories/releases/
org/hudsonci/plugins/clover
write permissions in master git repository on https://github.com/hudson3-plugins/clover-plugin
account on Hudson Wiki in order to edit the http://wiki.hudson-ci.org/display/HUDSON/Clover+Plug

 pagein

http://creativecommons.org/licenses/by/2.5/au/
https://oss.sonatype.org/content/repositories/releases/org/jvnet/hudson/plugins/clover
https://oss.sonatype.org/content/repositories/releases/org/jvnet/hudson/plugins/clover
https://github.com/hudson2-plugins/clover-plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
https://bugs.eclipse.org
http://wiki.hudson-ci.org/display/HUDSON/Releasing+Hudson+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
https://oss.sonatype.org/content/repositories/releases/org/hudsonci/plugins/clover
https://oss.sonatype.org/content/repositories/releases/org/hudsonci/plugins/clover
https://github.com/hudson3-plugins/clover-plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin

Documentation for Clover 4.0 494

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.

5.

a.
b.

c.

d.
e.

6.

1.

2.
3.
4.

5.

Build and Test

Clone the git@github.com/hudson3-plugins/clover-plugin.git
Create a bug on (Hudson project, Plugins component) for the issue you are fixing.https://bugs.eclipse.org
Make the necessary changes
Bump the plug-in version number (in pom.xml).
Bump the version number if necessary (in pom.xml). com.cenqua.clover:clover
Bump version if necessary (in pom.xml).org.eclipse.hudson.plugins:hudson-plugin-parent
Test by running Hudson with the Clover plugin installed and setting up a Clovered project for CI. This can
be achieved via:
mvn clean hpi:run

it starts Hudson on localhost:8080 by default, open it in web browser
open "Manage Hudson" > "Manage plugins" > "Installed" and check if new "Hudson Clover Plugin"
is listed
configure new project (you can use MoneyBags as a test case) and a build job (e.g. "freestyle
project" with "ant task")
configure "Post-build actions" > "Publish Clover Coverage Report" in the build job
run "Build now" and check if Clover summary report is available

Commit changes and push to GitHub. Include your Bugzilla bug ID from above in the commit line.

Release and Publish

Detailed instruction . If this is your first time publishing a Hudson release, allow at least a day or two forhere
Sonatype to process your JIRA requests, set you up and eventually enable Central Sync.

Steps in short:

Go to your local clover-plugin workspace and type
 mvn release:clean
 mvn release:prepare -DpushChanges=false
 mvn release:perform -DlocalCheckout=true
Login to Nexus OSS, open Staging Repositories, click "Close" button.
Download clover-X.X.X.hpi from OSS Nexus staging area and install and test it in your Hudson instance.
If works OK, changes from your local workspace to and clickgit push hudson3-plugins/clover-plugin
"Release" button on Nexus OSS.
Update the content of wiki page.HUDSON/Clover+Plugin

Tips

Don't release Hudson 2 and Hudson 3 plugin in parallel

Why? Because a staging repository created on the will contain mixed artifacts from bothoss.sonatype.org
plugins.

How to see the latest version in Hudson Plugin Manager? Where's the magic?

Once your plugin appears in the Maven Central repository (wait for couple of hours after pressing the release
button), it will be included in the Hudson Update Center:

http://hudson-ci.org/update-center3/update-center.json (Hudson 3)
http://hudson-ci.org/update-center.json (Hudson 2)

An update center generator tools runs periodically to generate the Hudson Update Center JSON file from

http://repo1.maven.org/maven2/org/hudsonci/plugins and
http://repo1.maven.org/maven2/org/jvnet/hudson/plugins not sure if it still runs

After this, the latest plugin version will be seen in the Plugin Manager in the Hudson administration panel.

Clover for Jenkins Developer Guide

http://creativecommons.org/licenses/by/2.5/au/
https://bugs.eclipse.org
http://wiki.hudson-ci.org/display/HUDSON/Releasing+Hudson+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Clover+Plugin
http://oss.sonatype.org
http://hudson-ci.org/update-center3/update-center.json
http://hudson-ci.org/update-center.json
http://repo1.maven.org/maven2/org/hudsonci/plugins
http://repo1.maven.org/maven2/org/jvnet/hudson/plugins

Documentation for Clover 4.0 495

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.
5.

a.
b.

c.

d.
e.

6.

Preconditions

You have GitHub account with SSH keys configured and the local SSH key is not protected by password
(otherwise release:prepare will hang)
Configure in settings.xml:maven.jenkins-ci.org

<!-- user/password of your Jenkins account! http://jenkins-ci.org/account -->
<server>
 <id>maven.jenkins-ci.org</id>
 <username>xxx</username>
 <password>yyy</password>
</server>

Clone the repository from GitHub using SSH:

git clone git@github.com:jenkinsci/clover-plugin.git
jenkins-clover-plugin

JDK1.6+
Maven 3.0+

Build and Test

If you have already cloned jenkinsci/clover-plugin then ensure you upstreamgit pull
Create a JIRA on for the issue you are fixing.https://issues.jenkins-ci.org/
Make changes necessary.
Bump the dependency version on Clover Core if necessary (in pom.xml)
Test by running Jenkins with the Clover plugin installed and setting up a Clovered project for CI. This can
be achieved via:
mvn clean hpi:run

it will start Jenkins on localhost:8080 by default, open it in web browser
open "Manage Jenkins" > "Manage plugins" > "Installed" and check if new "Jenkins Clover Plugin"
is listed
configure new project (you can use MoneyBags as a test case) and a build job (e.g. "freestyle
project" with "ant task")
configure "Post-build actions" > "Publish Clover Coverage Report" in the build job
run "Build now" and check if Clover summary report is available

Commit changes and push to GitHub. Include your JIRA issue from above.

Release and Publish

Run

mvn release:prepare
mvn release:perform

Verify that the plugin has been deployed:

visit http://maven.jenkins-ci.org/content/repositories/releases/org/jenkins-ci/plugins/clover/
visit http://repo.jenkins-ci.org/releases/org/jenkins-ci/plugins/
check (file is updated every 6 hours)http://updates.jenkins-ci.org/update-center.json
run your local Jenkins and open Administration page, check if you see the latest version number

Documentation

settings.xml

http://creativecommons.org/licenses/by/2.5/au/
http://maven.jenkins-ci.org
https://issues.jenkins-ci.org/
http://maven.jenkins-ci.org/content/repositories/releases/org/jenkins-ci/plugins/clover/
http://repo.jenkins-ci.org/releases/org/jenkins-ci/plugins/
http://updates.jenkins-ci.org/update-center.json

Documentation for Clover 4.0 496

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.

Edit the page. http://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin

Clover for Maven 2 and 3 Developer Guide

Getting the Source Code

The Clover-for-Maven2&3 plug-in source is stored in Mercurial repository on Bitbucket.org. To get a local copy of
the source code, a Mercurial client is required.

The following command will checkout the source code of the :atlassian/maven-clover2-plugin

hg clone ssh://hg@bitbucket.org/atlassian/maven-clover2-plugin

 TIP: do not mislead with the atlassian/maven-clover-plugin repository which is a Clover-for-Maven1.

Installing the Plugin

The plugin can then be built, tested and installed via:

mvn clean install

Running Integration Tests

To run the integration tests, use:

mvn clean integration-test -Pintegration-tests

Submitting a Patch

To submit a patch:

Make and test the change in your local subversion work area
Create a JIRA issue in project "Clover" (), set "Maven Plugin" component.CLOV
Ensure any new features/configuration options have been documented in the issue description.
Commit changes and:

clone a repository on bitbucket.org and push changes to it
create a pull request for projectatlassian/maven-clover2-plugin

or

generate a patch by running the following command in your local work area (where XXXX is the id
of the JIRA issue created above)

hg diff > CLOV-XXXX.patch

Upload the patch to the JIRA issue you created.

Binaries

Stable releases can be downloaded from or from Maven Central https://maven.atlassian.com/content/repositorie
s/atlassian-public/com/atlassian/maven/plugins/maven-clover2-plugin

http://creativecommons.org/licenses/by/2.5/au/
http://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
https://bitbucket.org/atlassian/maven-clover2-plugin
https://jira.atlassian.com/browse/CLOV
https://bitbucket.org/atlassian/maven-clover2-plugin
http://search.maven.org
https://maven.atlassian.com/content/repositories/atlassian-public/com/atlassian/maven/plugins/maven-clover2-plugin/
https://maven.atlassian.com/content/repositories/atlassian-public/com/atlassian/maven/plugins/maven-clover2-plugin/

Documentation for Clover 4.0 497

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

1.
2.
3.
4.

Miscellaneous

 The JIRA issue tracker is deprecated, please raisehttps://studio.plugins.atlassian.com/browse/CLMVN
issues on https://jira.atlassian.com/browse/CLOV

 The SVN respository is deprecated, use the HGhttps://studio.plugins.atlassian.com/svn/CLMVN/trunk
repository from https://bitbucket.org/atlassian/maven-clover2-plugin

Clover-for-Maven1 Developer Guide

Getting the Source Code

The Clover-for-Maven1-Plugin source is stored in Mercurial repository on bitbucket.org. To get a local copy of
the source code, a Mercurial client is required.

The following command will checkout the source code of the :atlassian/maven-clover-plugin

hg clone ssh://hg@bitbucket.org/atlassian/maven-clover-plugin

Testing the Plugin

1) Running test cases:

cd maven-clover-plugin
maven plugin:install plugin:repository-install
cd src/plugin-test
maven testPlugin
-Dmaven.repo.remote=https://maven.atlassian.com/maven1,http://repo1.maven.org/maven
-Dmaven.clover.license.path=/path/to/clover.license

2) Generating site documentation:

maven site
-Dmaven.repo.remote=http://mirrors.ibiblio.org/maven,http://repo1.maven.
org/maven

 There might be a problem with finding qdox-current.jar - in such case, download it from http://mirrors.ibiblio.or
 and install manually ing/pub/mirrors/maven2/vdoclet/qdox/current/qdox-current.jar

~/.maven/repository/vdoclet/jars/qdox-current.jar

Submitting a Patch

To submit a patch:

Make and test the change in your local work area.
Create a JIRA issue in project "Clover" (), set "Maven Plugin" component.CLOV
Ensure any new features/configuration options have been documented in the issue description.
Commit changes and:

http://creativecommons.org/licenses/by/2.5/au/
https://studio.plugins.atlassian.com/browse/CLMVN
https://jira.atlassian.com/browse/CLOV
https://studio.plugins.atlassian.com/svn/CLMVN/trunk
https://bitbucket.org/atlassian/maven-clover2-plugin
https://bitbucket.org/atlassian/maven-clover-plugin
http://mirrors.ibiblio.org/pub/mirrors/maven2/vdoclet/qdox/current/qdox-current.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/vdoclet/qdox/current/qdox-current.jar
https://jira.atlassian.com/browse/CLOV

Documentation for Clover 4.0 498

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

4.

5.

clone a repository on bitbucket.org and push changes to it
create a pull request for projectatlassian/maven-clover-plugin

or
generate a patch by running the following command in your local work area

hg diff > CLOV-XXXX.patch

where XXXX is the id of the JIRA created above.
Upload the patch to the JIRA issue you created.

Binaries

Stable releases can be downloaded from or from Maven Central https://maven.atlassian.com/maven1/maven/pl
ugins/

Miscellaneous

 The JIRA issue tracker is deprecated, please raisehttps://studio.plugins.atlassian.com/browse/CLMVNONE
issues on https://jira.atlassian.com/browse/CLOV

 The SVN respository is deprecated, use the HGhttps://studio.plugins.atlassian.com/svn/CLMVNONE/trunk
repository from https://bitbucket.org/atlassian/maven-clover-plugin

Clover Road Map

List of upcoming Clover releases

Year 2014 2015

Version 4.0.0 4.0.1 4.0.2 4.0.3 4.0.4 4.1.0 4.1.1 4.1.2 4.1.3 4.2.0

Content New
HTML
report

ADG,
Grails,
Groovy
fixes

Bamboo
Clover
Plugin

REST
API for
reports

API / SPI
for new
languages

Scala
language
support

Bug
fixes
(Ant,
Maven)

Bug
fixes
(Eclipse,
IDEA)

Bug fixes
(Test
optimization)

Groovy
in IDE

More details on the CLOV project road map on jira.atlassian.com

End of technical support for Clover versions

Atlassian Support End of Life Policy

Ideas for new Clover features

If you have an idea for a new feature in Clover, you can report it on (justhttps://jira.atlassian.com/browse/CLOV

Disclaimer
All bugs and feature requests are managed and scheduled according to the Atlassian Bug Fixing Policy
and the .Implementation of New Features Policy

In particular, it means that issues can be moved between releases, priority of bugs can change, releases
can be split or merged etc. Changes to the existing road map are usually triggered by events like: critical
bug found, customer feedback, tickets raised on Atlassian Support. Therefore, please do not treat the
following road map as an official commitment, but rather as a vision in which direction Clover will
develop. The most accurate planning is for the incoming release.

http://creativecommons.org/licenses/by/2.5/au/
https://bitbucket.org/atlassian/maven-clover-plugin
http://search.maven.org
https://maven.atlassian.com/maven1/maven/plugins/
https://maven.atlassian.com/maven1/maven/plugins/
https://studio.plugins.atlassian.com/browse/CLMVNONE
https://jira.atlassian.com/browse/CLOV
https://studio.plugins.atlassian.com/svn/CLMVNONE/trunk
https://bitbucket.org/atlassian/maven-clover-plugin
https://jira.atlassian.com/browse/CLOV#selectedTab=com.atlassian.jira.plugin.system.project%3Aroadmap-panel
https://confluence.atlassian.com/display/Support/Atlassian+Support+End+of+Life+Policy
https://jira.atlassian.com/browse/CLOV
https://confluence.atlassian.com/display/Support/Atlassian+Bug+Fixing+Policy
https://confluence.atlassian.com/display/DEV/Implementation+of+New+Features+Policy

Documentation for Clover 4.0 499

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

make sure that it's not reported already). We're also very interested in your feedback about feature requests
raised already - feel free to vote on them.

Top 10 most voted new features are:

Key Summary Votes Fix Version/s

CLOV-932 Provide support for the Scala language 33 someday

CLOV-250 Clover support for AspectJ 22 won't fix

CLOV-939 Add Groovy support in Clover for Intellij 14 4.2.0

CLOV-1009 Easy integration with Gradle 5 someday

CLOV-286 Expose a Java API to the Clover database 3 4.0.4

CLOV-739 New option to "Run Optimized Tests" on every Make (CMD-F9) 2 someday

CLOV-738 Allow users to enable/disable coverage collection at runtime. 2 someday

CLOV-570 Android for Clover-for-Maven 2 someday

CLOV-333 Allow for sub expression Analysis 2 4.3.x

CLOV-1142 Expose a Service Provider Interface for Clover 2 4.0.4

 Showing 10 out of 87 issues

Contributing to the Clover Documentation
Would you like to share your Clover hints, tips and techniques with us and with other Clover users? We welcome
your contributions. Have you found a mistake in the documentation, or do you have a small addition that would
be so easy to add yourself rather than asking us to do it? You can update the documentation page directly.

Getting Permission to Update the Documentation

Our documentation wiki contains developer-focused documentation (such as API guides, plugin and gadget
development guides and guides to other frameworks) as well as product documentation (user's guides,
administrator's guides and installation guides).

If you want to update the , we ask you to sign the Atlassian Contributor LicenseClover product documentation
Agreement (ACLA) before we grant you wiki permissions to update the documentation space. Please read the A

 to see the terms of the agreement and the documentation it covers. Then sign and submit the agreementCLA
as described on the form attached to that page.

Following our Style Guide

Please read our short .guidelines for authors

How we Manage Community Updates

Here is a quick guide to how we manage community contributions to our documentation and the copyright that
applies to the documentation:

Monitoring by technical writers. The Atlassian technical writers monitor the updates to the
documentation spaces, using RSS feeds and watching the spaces. If someone makes an update that
needs some attention from us, we will make the necessary changes.
Wiki permissions. We use wiki permissions to determine who can edit the documentation spaces. We
ask people to sign the (ACLA) and submit it to us. That allowsAtlassian Contributor License Agreement
us to verify that the applicant is a real person. Then we give them permission to update the
documentation.
Copyright. The Atlassian documentation is published under a Creative Commons CC BY license.
Specifically, we use a . This means that anyone canCreative Commons Attribution 2.5 Australia License
copy, distribute and adapt our documentation provided they acknowledge the source of the
documentation. The CC BY license is shown in the footer of every page, so that anyone who contributes
to our documentation knows that their contribution falls under the same copyright.

RELATED TOPICS

http://creativecommons.org/licenses/by/2.5/au/
https://jira.atlassian.com/browse/CLOV-932?src=confmacro
https://jira.atlassian.com/browse/CLOV-932?src=confmacro
https://jira.atlassian.com/browse/CLOV-250?src=confmacro
https://jira.atlassian.com/browse/CLOV-250?src=confmacro
https://jira.atlassian.com/browse/CLOV-939?src=confmacro
https://jira.atlassian.com/browse/CLOV-939?src=confmacro
https://jira.atlassian.com/browse/CLOV-1009?src=confmacro
https://jira.atlassian.com/browse/CLOV-1009?src=confmacro
https://jira.atlassian.com/browse/CLOV-286?src=confmacro
https://jira.atlassian.com/browse/CLOV-286?src=confmacro
https://jira.atlassian.com/browse/CLOV-739?src=confmacro
https://jira.atlassian.com/browse/CLOV-739?src=confmacro
https://jira.atlassian.com/browse/CLOV-738?src=confmacro
https://jira.atlassian.com/browse/CLOV-738?src=confmacro
https://jira.atlassian.com/browse/CLOV-570?src=confmacro
https://jira.atlassian.com/browse/CLOV-570?src=confmacro
https://jira.atlassian.com/browse/CLOV-333?src=confmacro
https://jira.atlassian.com/browse/CLOV-333?src=confmacro
https://jira.atlassian.com/browse/CLOV-1142?src=confmacro
https://jira.atlassian.com/browse/CLOV-1142?src=confmacro
https://jira.atlassian.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CLOV+AND+issuetype+in+%28Epic%2C+%22New+Feature%22%29+AND+resolution+%3D+Unresolved+ORDER+BY+votes+DESC++++&src=confmacro
https://confluence.atlassian.com/display/CLOVER
https://confluence.atlassian.com/display/ALLDOC/Atlassian+Contributor+License+Agreement
https://confluence.atlassian.com/display/ALLDOC/Atlassian+Contributor+License+Agreement
https://confluence.atlassian.com/display/ALLDOC/Author+Guidelines
https://confluence.atlassian.com/display/ALLDOC/Atlassian+Contributor+License+Agreement
http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 500

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Author Guidelines
Atlassian Contributor License Agreement

Database Structure

Model

Class overview

Possible entity nesting

entity below can be nested in entity branch statement method class file package

branch

statement N N

http://creativecommons.org/licenses/by/2.5/au/
https://confluence.atlassian.com/display/ALLDOC/Author+Guidelines
https://confluence.atlassian.com/display/ALLDOC/Atlassian+Contributor+License+Agreement

Documentation for Clover 4.0 501

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

method N N

class N N 1

file

package 2

Comments

N - new in Clover 3.2.0
1 - there are helper methods PackageInfo.getClasses() / getAllClasses() which returns classes from a package
2 - there are helper methods PackageInfo.getClassesIncludingSubPackages() /
getAllClassesIncludingSubPackages() searching for classes in nested packages

From a logical perspective a branch should be nested inside a statement, e.g. "if (a > 5) .." has one statement
with true and false branches in it. However, due to performance reasons, branches are kept aside statements,
directly under a method. It's planned to add branches also under a class and a file in one of future Clover
releases.

Since Clover 3.2 it's possible to nest classes inside classes. This can be used to model an inner class such as:

class A {
 class B { }
}

Clover does not keep inner classes this way, however. All inner classes are kept directly under a file. One of the
reasons for such approach is a separation of code metrics, i.e. a complexity of an inner class B does not count
to the complexity of a parent class A.

Clover does not keep anonymous inline classes as a class entity in the model. Instead of this, methods of an
anonymous class are being added to the parent class. This is a legacy issue.

Note that Clover 3.2 keeps lambda functions as classes declared under a method. Due to fact that lambda
functions can be converted to a functional interface and vice versa, we plan to fix it and make it consistent in a
future Clover release. Therefore, anonymous inline classes will have their own entity in a database model and
will be kept under an enclosing method.

Java API

Interfaces describing the database structure are located in the package (com.atlassian.clover.api.registry Jav
).aDoc

They can be grouped into few categories:

basic entities stored in a database are represented by ProjectInfo, PackageInfo, FileInfo, ClassInfo,
 and MethodInfo, StatementInfo BranchInfo

these entities implement orHasPackages, HasFiles, HasClasses, HasMethods, HasStatements HasBran
 interfaces which allow to navigate to their childrenches

HasParent, EntityContainer and allows to get to the parent entity (note that some entitiesEntityVisitor
might have different parent types)
HasMetrics, HasAggregatedMetrics returns information about code metrics
helper interfaces describing data structures such as etMethodSignatureInfo, Annotation, AnnotationValue
c

http://creativecommons.org/licenses/by/2.5/au/
https://docs.atlassian.com/atlassian-clover/latest/
https://docs.atlassian.com/atlassian-clover/latest/

Documentation for Clover 4.0 502

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

Reading from a Clover database

An example how to read a content of a database.

If you'd like to read a database without coverage, then replace "CloverDatabase.loadWithCoverage(..)" by "new
CloverDatabase(initstring)"

import com.atlassian.clover.CloverDatabase;
import com.atlassian.clover.CoverageDataSpec;
import com.atlassian.clover.api.registry.ClassInfo;
import com.atlassian.clover.api.registry.FileInfo;
import com.atlassian.clover.api.registry.MethodInfo;
import com.atlassian.clover.api.registry.PackageInfo;
import com.atlassian.clover.api.registry.ProjectInfo;

import java.io.PrintStream;

public class SimpleRegistryDumper {
 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage:");
 System.err.println("java " + SimpleRegistryDumper.class.getName() + "
database");
 } else {
 // read clover database together with coverage recording files, use
time span=0 (latest build)
 CloverDatabase db = CloverDatabase.loadWithCoverage(args[0], new
CoverageDataSpec());
 ProjectInfo projectInfo = db.getRegistry().getProject();
 // print some project details
 printProject(projectInfo, System.out);
 }
 }
 private static void printProject(ProjectInfo db, PrintStream out) {
 for (PackageInfo packageInfo : db.getAllPackages()) {
 out.println("package: " + packageInfo.getName());
 for (FileInfo fileInfo : packageInfo.getFiles()) {
 out.println("\tfile: " + fileInfo.getName());
 for (ClassInfo classInfo : fileInfo.getClasses()) {
 out.println("\t\tclass: " + classInfo.getName());
 for (MethodInfo methodInfo : classInfo.getMethods()) {
 out.println("\t\t\tmethod: " + methodInfo.getName());
 }
 }
 }
 }
 }
}

Writing to a Clover database

import com.atlassian.clover.api.CloverException;
import com.atlassian.clover.api.instrumentation.InstrumentationSession;
import com.atlassian.clover.api.registry.FileInfo;
import com.atlassian.clover.context.ContextSet;
import com.atlassian.clover.registry.Clover2Registry;
import com.atlassian.clover.registry.FixedSourceRegion;
import com.atlassian.clover.registry.entities.MethodSignature;
import com.atlassian.clover.registry.entities.Modifier;

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 503

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

import com.atlassian.clover.registry.entities.Modifiers;
import com.atlassian.clover.registry.entities.Parameter;
import com.atlassian.clover.spi.lang.LanguageConstruct;

import java.io.File;
import java.io.IOException;

public class SimpleCodeInstrumenter {
 private Clover2Registry registry;
 private InstrumentationSession session;

 public SimpleCodeInstrumenter(String initString, String projectName) throws
CloverException {
 try {
 final File dbFile = new File(initString);
 registry = Clover2Registry.createOrLoad(dbFile, projectName);
 if (registry == null) {
 throw new CloverException("Unable to create or load clover registry
located at: " + dbFile);
 }
 } catch (IOException e) {
 throw new CloverException(e);
 }
 }

 public void startInstrumentation(String encoding) throws CloverException {
 session = registry.startInstr(encoding);
 }

 public Clover2Registry endInstrumentation(boolean append) throws
CloverException {
 try {
 session.close();
 if (append) {
 registry.saveAndAppendToFile();
 } else {
 registry.saveAndOverwriteFile();
 }
 return registry;
 } catch (IOException e) {
 throw new CloverException(e);
 }
 }

 /**
 * This method should perform the actual instrumentation. On every code
construct you find in your
 * source file(s) being instrumented (such as file, class, method, statement,
branch) you shall call
 * proper handler from InstrumentationSession class in order to record data for
a given code entity
 * in the Clover database.
 */
 public void instrument() {
 // note: there is no need to call session.enterPackage(packageName), it
will be called from
 // session.enterFile(); the same applies to session.exitPackage()

 // example: register a file with attributes such as enclosing package,
number of lines, time stamp, checksum
 String packageName = "com.acme.my.package";
 File sourceFile = new File("com/acme/my/package/Foo.java");
 FileInfo fileInfo = session.enterFile(packageName, sourceFile,

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 504

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 200, 100, sourceFile.lastModified(), sourceFile.length(), 3423452);

 // example: register a class (in current file)
 session.enterClass("Foo", new FixedSourceRegion(10, 1), false, false,
false);

 // example: add a method to the Foo class
 MethodSignature methodSignature = new MethodSignature("helloWorld", null,
// method name and generic type
 "void",
// return type
 new Parameter[] { new Parameter("String", "name") },
// formal parameters
 null,
// throws
 Modifiers.createFrom(Modifier.PROTECTED | Modifier.STATIC, null));
// modifiers
 session.enterMethod(new ContextSet(), new FixedSourceRegion(12, 1),
// start row:column
 methodSignature, false, false, 5,
LanguageConstruct.Builtin.METHOD); // other attributes

 // example: add a statement in the helloWorld method
 session.addStatement(new ContextSet(), new FixedSourceRegion(13, 1, 13,
44),
 3, LanguageConstruct.Builtin.STATEMENT);

 // end method, class and a file
 session.exitMethod(14, 1); // end row:column
 session.exitClass(30, 2); // end row:column
 session.exitFile();
 }

 public static void main(String[] args) throws CloverException {
 if (args.length != 1) {
 System.err.println("Usage:");
 System.err.println("java " + SimpleCodeInstrumenter.class.getName() + "
database");
 } else {
 SimpleCodeInstrumenter instrumenter = new
SimpleCodeInstrumenter(args[0], "MyProject");
 instrumenter.startInstrumentation("UTF-8");
 instrumenter.instrument();
 instrumenter.endInstrumentation(true);

http://creativecommons.org/licenses/by/2.5/au/

Documentation for Clover 4.0 505

Created in 2014 by Atlassian. Licensed under a .Creative Commons Attribution 2.5 Australia License

 }
 }
}

Upgrading third party libraries
Clover is using a number of third party libraries (based mainly on Apache License or LGPL), for example
Commons Lang, JFreeChart, Antlr.

In case when you would like to upgrade these libraries (assuming that they are API-compatible) you would have
to perform following steps:

remove third party library classes from Clover JAR(s) (clover.jar, clover-ant.jar, clover-runtime.jar,
com.atlassian.clover.eclipse.core*.jar etc ...)
repackage new third party library classes with a 'clover.' prefix (using JarJar tool for instance)
put repackaged classes into Clover JAR(s)
optional: perform back-porting to JRE 1.4 class format (using Retrotranslator tool; this step is optional and
necessary only if you're running your application on Java 1.4)

In order to make it more convenient, since release 3.1.8 Clover is bundled with the upgrade script written in Ant:

Clover-for-Ant: located in /extlib/upgrade.xml in the clover-ant-X.X.X.zip file
Clover-for-Eclipse: located in /extlib/upgrade.xml in the
com.atlassian.clover.eclipse.updatesite_X.X.XvNNNNNNNNNNNNNN.zip
Clover-for-IDEA: located in /extlib/upgrade.xml in the clover-idea.jar plugin
Clover-for-Maven2&3: there are no new third party tools used

Detailed documentation how to use it is written in the scripts.

http://creativecommons.org/licenses/by/2.5/au/

	About Clover
	About Code Coverage
	About Distributed Per-Test Coverage
	About Test Optimization
	About Clover Editions
	About Clover code metrics

	Supported Platforms
	End of Platform Support Announcements

	Clover-for-Ant
	Clover-for-Ant User's Guide
	1. QuickStart Guide
	Clover for Ant Best Practices
	Clover-for-Ant Two Line Integration
	Test Optimization Quick Start Guide for Ant

	2. Using Clover Interactively
	3. Using Clover in Automated Builds
	4. Understanding Reports
	'Current' Report
	Coverage Legend
	Dashboard Widgets
	Source Cross-Referencing in Reports
	Stack Trace Navigation
	Tag Clouds

	'Historical' Report

	5. Configuring Reports
	Unit Test Results and Per-Test Coverage
	Using Coverage Contexts
	Using Spans
	Specifying an Interval

	Sharing Report Formats
	Extracting Coverage Data programmatically

	6. Ant Task Reference
	clover-check
	clover-clean
	clover-env
	clover-historypoint
	clover-html-report
	clover-instr
	clover-log
	clover-merge
	clover-pdf-report
	clover-report
	<added> element
	<chart> element
	<columns> element
	<format> element
	<movers> element
	JSON reference
	Basic Clover Confluence Integration

	clover-setup
	Clover test detection
	methodContext
	profiles
	statementContext

	clover-snapshot

	7. Ant Type Reference
	clover-columns
	clover-format
	clover-optimized-testset

	8. Controlling Clover at Runtime
	Clover Performance Tuning
	Coverage Recorders
	Managing the Coverage Database
	Using a Flush Policy
	Using Source Directives
	Working with Distributed Applications
	Using Distributed Per-test Coverage with Clover-for-Ant

	Working with Restricted Security Environments
	Working in OJVM

	9. Clover Target Reference
	A. Integrating Clover-for-Ant with other tools
	Integrating Clover with JUnit4 Parameterized Tests
	Using Clover-for-Ant with GWT

	Clover-for-Ant Installation Guide
	Adding to Ant's build.xml
	Adding to Ant's Classpath

	Clover-for-Ant Upgrade Guide
	Clover-for-Ant Changelog
	Changes in Clover-for-Ant 4.0.0
	Changes in Clover-for-Ant 3.3.0

	Clover-for-Maven 2 and 3
	About Clover-for-Maven 2 and 3
	Clover-for-Maven 2 and 3 Quick Start Guide
	Clover-for-Maven 2 and 3 User's Guide
	Basic usage
	Configuring instrumentation
	Configuring reports
	Creating custom reports

	Configuring a coverage goal
	Using Test Optimization in Maven
	Using Distributed Per-test Coverage
	Using Clover in various environment configurations
	Using Clover for web applications
	Best Practices for Maven
	Compiling Groovy with GMaven plugin
	Compiling Groovy with Groovy Eclipse Plugin
	Using with Surefire and Failsafe Plugins
	Using Clover with the GWT-maven plugin
	Using Clover with JAXB plugin
	Using Clover with Maven + surefire-test + inner test classes
	Using Clover with the maven-bundle-plugin
	Using Clover via the maven-antrun-plugin
	Using Clover with Maven Tycho Plugin

	Clover-for-Maven 2 and 3 Installation Guide
	Clover-for-Maven 2 and 3 Upgrade Guide
	Clover-for-Maven 2 and 3 Changelog
	Changes in Clover-for-Maven 4.0.0
	Changes in Clover-for-Maven 3.3.0

	Clover-for-Maven 2 and 3 FAQ

	Clover-for-Eclipse
	Clover-for-Eclipse User's Guide
	1. Clover for Eclipse in 10 minutes
	2. Exploration of coverage in Eclipse
	3. Exploration of test results in Eclipse
	4. Scope of instrumentation in Eclipse
	5. Eclipse configuration options
	6. Generating reports in Eclipse
	7. Test Optimization for Eclipse
	8. Launching an Ant build from Eclipse
	9. Eclipse advanced topics
	Instrumenting RCP Application
	Performance Tuning in Clover for Eclipse

	Clover-for-Eclipse Installation Guide
	Installing Clover-for-Eclipse

	Clover-for-Eclipse Upgrade Guide
	Clover-for-Eclipse Changelog
	Changes in Clover-for-Eclipse 4.0.0
	Changes in Clover-for-Eclipse 3.3.0

	Clover-for-Eclipse Glossary of Terms
	Clover-for-Eclipse FAQ

	Clover-for-IDEA
	Clover-for-IDEA User's Guide
	1. Clover for IDEA in 10 minutes
	2. Exploration of coverage in IDEA
	3. Exploration of test results in IDEA
	4. Scope of instrumentation in IDEA
	5. IDEA configuration options
	Clover-for-IDEA Auto-Updates

	6. Generating reports in IDEA
	7. Test Optimization for IDEA
	8. Launching Ant build from IDEA
	9. IDEA Advanced topics
	Performance Tuning in Clover for IDEA

	Clover-for-IDEA Installation Guide
	Clover-for-IDEA Upgrade Guide
	Clover-for-IDEA Changelog
	Changes in Clover-for-IDEA 4.0.0
	Changes in Clover-for-IDEA 3.3.0

	Clover-for-IDEA Glossary of Terms
	Clover-for-IDEA FAQ

	Clover-for-Grails
	Clover-for-Grails Quick Start Guide
	Clover-for-Grails User's Guide
	Configuration options
	Advanced report configuration
	Advanced setup configuration
	Configuring method context filters
	Test Optimization with Clover-for-Grails

	Clover-for-Grails Installation Guide
	Clover-for-Grails Upgrade Guide
	About Clover-for-Grails
	Clover-for-Grails Changelog
	Changes in Clover-for-Grails 4.0.0
	Changes in Clover-for-Grails 3.3.0

	Clover Command Line Tools
	CloverInstr
	CloverMerge
	ConsoleReporter
	HtmlReporter
	JSONReporter
	PDFReporter
	XMLReporter

	Bamboo Clover Plugin
	Gradle Clover Plugin
	Griffon Clover Plugin
	Hudson Clover Plugin
	Jenkins Clover Plugin
	Sonar Clover Plugin
	Clover Release Notes
	Clover 4.0 Release Notes
	A side-by-side comparison of the Classic and the ADG HTML report

	Clover 3.3 Release Notes
	Clover 3.2 Release Notes
	Clover 3.1 Release Notes
	Clover 3.0 Release Notes
	Clover 2.6 Release Notes
	Clover 2.5 Release Notes
	Clover 2.4 Release Notes
	Clover 2.3 Release Notes
	Clover 2.2 Release Notes
	Clover 2.1 Release Notes
	Clover 2.0 Release Notes
	Clover Release Summary

	Clover Tutorials
	Clover-for-Ant tutorial
	Part 0 - Clover in 10 minutes
	Part 1 - Measuring Coverage
	Part 2 - Historical Reporting
	Part 3 - Automating Coverage Checks
	Part 4 - Test Optimization Tutorial

	Clover-for-Maven tutorials
	How to configure your Clover license

	Hacking Clover
	Clover-for-Android
	Clover-for-Scala
	Converting XML to database format
	Measuring per-test coverage for manual tests
	Updating optimization snapshot file
	Using Clover for other programming languages
	Instrumenting JSP files
	Using Clover for PHP

	Glossary
	branch coverage
	code coverage
	coverage
	coverage clouds
	decision coverage
	history point
	interval
	method coverage
	span
	statement coverage
	test coverage

	Clover FAQ
	Concepts & Usage FAQ
	Can I create a Clover Report on Server A if I have the clover.db which I generated on Server B?
	Does Clover depend on JUnit?
	Does Clover integrate with Maven?
	Does Clover support the new language features in JDK1.5?
	Does Clover work with JUnit4 and TestNG?
	How are the Clover coverage percentages calculated?
	How do I compare the code coverage between two releases of my code?
	How do I get started with Clover?
	How do I use Clover with NetBeans?
	What are the limitations of Code Coverage?
	What does the name "Clover" mean?
	What is Code Coverage Analysis?
	What is the coverage.db file and why am I seeing files like coverage.dbxxxxxxxxx_xxxxx_xxxx?
	What third-party libraries does Clover utilise?
	Where did Clover originally come from?
	Why does Clover instrument classes I have excluded using the 'exclude' element of the 'clover-setup ' task?
	Why does Clover use source code instrumentation?
	Will Clover integrate with my IDE?

	Eclipse Plugin FAQ
	I only need instrumented classes for unit testing and I don't want to risk publishing them to my production environment. How can I do this with Clover?
	Is Clover supported on IBM's RAD?
	I store my plugins and features in an Eclipse extension area. Does Clover support this?
	Why can I only see coverage data for the last test case I executed?

	IDEA Plugin FAQ
	I've run my tests, but coverage information does not show in IDEA
	What does enabling Instrument Test Source Folders do?
	Where does IDEA write its log file?

	Maven 2 and 3 Plugin FAQ
	Deploying Instrumented Jars
	How to keep Clover reports between builds?
	How to remove -clover suffix from artifact name?
	Is there an alternative to using the Maven Central repository?
	Preparing multi-module projects for remote deployment with Clover-for-Maven 2
	Troubleshooting License problems
	Troubleshooting problems with displaying characters

	Support Policies
	Bug Fixing Policy
	How to Report a Security Issue
	New Features Policy
	Security Advisory Publishing Policy
	Security Update Policy
	Severity Levels for Security Issues
	Update Policy

	Troubleshooting
	Compiling my instrumented sources fails with a 'code too large' error.
	For some statements in my code Clover reports "No Coverage information gathered for this expression". What does that mean?
	Hit count for multi-threaded test is incorrect in Clover's report.
	I'm trying to get a coverage report mailed, but I keep getting "mail  Failed to send email". How do I fix this?
	I'm using the maven-clover-plugin version 2.4 with a license downloaded from Atlassian and get the message 'Invalid or missing License'
	Tools for Troubleshooting Clover-for-Ant
	Two questions to ask yourself first when troubleshooting Clover
	When generating some report types on my UNIX server with no XServer, I get an exception "Can't connect to X11 server" or similar.
	When using Clover, why do I get a java.lang.NoClassDefFoundError when I run my code?
	When using Clover from Ant, why do I get "Compiler Adapter 'org.apache.tools.ant.taskdefs.CloverCompilerAdapter' can't be found." or similar?
	Why does the 'Test Results' summary page report show that I have unique coverage, when the source page shows no unique coverage?
	Why do I get 0% coverage when I run my tests and then a reporter from the same instance of Ant?
	Why do I get a 'java.lang.OutOfMemoryError - PermGen space' error?
	Why do I get an java.lang.OutOfMemoryError when compiling with Clover turned on?

	Clover Resources
	Clover Development Hub
	Clover for Grails Developer Guide
	Creating Grails plugins using Clover

	Clover for Hudson Developer Guide
	Clover for Jenkins Developer Guide
	Clover for Maven 2 and 3 Developer Guide
	Clover-for-Maven1 Developer Guide
	Clover Road Map
	Contributing to the Clover Documentation
	Database Structure
	Upgrading third party libraries

